
首次结合RL与SFT各自优势,动态引导模型实现推理⾼效训练
首次结合RL与SFT各自优势,动态引导模型实现推理⾼效训练新一代大型推理模型,如 OpenAI-o3、DeepSeek-R1 和 Kimi-1.5,在复杂推理方面取得了显著进展。该方向核心是一种名为 ZERO-RL 的训练方法,即采用可验证奖励强化学习(RLVR)逐步提升大模型在强推理场景 (math, coding) 的 pass@1 能力。
新一代大型推理模型,如 OpenAI-o3、DeepSeek-R1 和 Kimi-1.5,在复杂推理方面取得了显著进展。该方向核心是一种名为 ZERO-RL 的训练方法,即采用可验证奖励强化学习(RLVR)逐步提升大模型在强推理场景 (math, coding) 的 pass@1 能力。
在正式走近ChatGPT Agent之前,让我们介绍一下这次谈话的几位主角,他们分别是OpenAI团队核心成员Isa Fulford、Casey Chu和孙之清。我们团队分别开发了Operator和Deep Research,在分析用户请求时发现,Deep Research的用户非常希望模型能够访问需要付费订阅的内容或有门槛的资源,而Operator恰好具备这种能力。
我们知道,训练大模型本就极具挑战,而随着模型规模的扩大与应用领域的拓展,难度也在不断增加,所需的数据更是海量。大型语言模型(LLM)主要依赖大量文本数据,视觉语言模型(VLM)则需要同时包含文本与图像的数据,而在机器人领域,视觉 - 语言 - 行动模型(VLA)则要求大量真实世界中机器人执行任务的数据。
本文的主要作者来自复旦大学和南洋理工大学 S-Lab,研究方向聚焦于视觉推理与强化学习优化。
实时强化学习来了!AI 再也不怕「卡顿」。 设想这样一个未来场景:多个厨师机器人正在协作制作煎蛋卷。
从 ChatGPT 引发的通用聊天机器人热潮,到如今正迅猛发展的智能体模型,AI 正在经历一次深刻的范式转变:从被动响应的「语言模型」,走向具备自主决策能力的「智能体」。我们也正在进入所谓的「经验时代」或「软件 3.0 时代」。
如今,强化学习(Reinforcement Learning,RL)在多个领域已取得显著成果。
强化学习改变了大语言模型的后训练范式,可以说,已成为AI迈向AGI进程中的关键技术节点。然而,其中奖励模型的设计与训练,始终是制约后训练效果、模型能力进一步提升的瓶颈所在。
让大模型在学习推理的同时学会感知。伊利诺伊大学香槟分校(UIUC)与阿里巴巴通义实验室联合推出了全新的专注于多模态推理的强化学习算法PAPO(Perception-Aware Policy Optimization)。
2025上半年AI Agent领域经历模型竞争加剧和范式演进,DeepSeek等新模型打破垄断,推动Tool Use和强化学习突破。Agent从Prompt、Workflow发展为自主决策、环境感知和工具使用的智能体。编程领域验证PMF,落地机会集中于垂直场景和C端创新,但商业壁垒和技术挑战仍待解决。