AI资讯新闻榜单内容搜索-强化学习

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 强化学习
AI在线强化学习“边做边学”,斯坦福团队让7B小模型性能飙升,甚至超越GPT-4o

AI在线强化学习“边做边学”,斯坦福团队让7B小模型性能飙升,甚至超越GPT-4o

AI在线强化学习“边做边学”,斯坦福团队让7B小模型性能飙升,甚至超越GPT-4o

斯坦福等新框架,用在线强化学习让智能体系统“以小搏大”,领先GPT-4o—— AgentFlow,是一种能够在线优化智能体系统的新范式,可以持续提升智能体系统对于复杂问题的推理能力。

来自主题: AI技术研报
5544 点击    2025-10-25 14:03
大模型推理学习新范式!ExGRPO框架:从盲目刷题到聪明复盘

大模型推理学习新范式!ExGRPO框架:从盲目刷题到聪明复盘

大模型推理学习新范式!ExGRPO框架:从盲目刷题到聪明复盘

大模型在强化学习过程中,终于知道什么经验更宝贵了! 来自上海人工智能实验室、澳门大学、南京大学和香港中文大学的研究团队,最近提出了一套经验管理和学习框架ExGRPO—— 通过科学地识别、存储、筛选和学习有价值的经验,让大模型在优化推理能力的道路上,走得更稳、更快、更远。

来自主题: AI技术研报
5581 点击    2025-10-23 15:42
智源开源EditScore:为图像编辑解锁在线强化学习的无限可能

智源开源EditScore:为图像编辑解锁在线强化学习的无限可能

智源开源EditScore:为图像编辑解锁在线强化学习的无限可能

随着多模态大模型的不断演进,指令引导的图像编辑(Instruction-guided Image Editing)技术取得了显著进展。然而,现有模型在遵循复杂、精细的文本指令方面仍面临巨大挑战,往往需要用户进行多次尝试和手动筛选,难以实现稳定、高质量的「一步到位」式编辑。

来自主题: AI技术研报
9383 点击    2025-10-23 12:28
X上63万人围观的Traning-Free GRPO:把GRPO搬进上下文空间学习

X上63万人围观的Traning-Free GRPO:把GRPO搬进上下文空间学习

X上63万人围观的Traning-Free GRPO:把GRPO搬进上下文空间学习

年初的 DeepSeek-R1,带来了大模型强化学习(RL)的火爆。无论是数学推理、工具调用,还是多智能体协作,GRPO(Group Relative Policy Optimization)都成了最常见的 RL 算法。

来自主题: AI技术研报
6063 点击    2025-10-23 11:41
清华、快手提出AttnRL:让大模型用「注意力」探索

清华、快手提出AttnRL:让大模型用「注意力」探索

清华、快手提出AttnRL:让大模型用「注意力」探索

从 AlphaGo 战胜人类棋手,到 GPT 系列展现出惊人的推理与语言能力,强化学习(Reinforcement Learning, RL)一直是让机器「学会思考」的关键驱动力。

来自主题: AI技术研报
7150 点击    2025-10-22 11:46
AGI前夜重磅:RL突破模型「认知上限」,真·学习发生了!

AGI前夜重磅:RL突破模型「认知上限」,真·学习发生了!

AGI前夜重磅:RL突破模型「认知上限」,真·学习发生了!

UC Berkeley、UW、AI2 等机构联合团队最新工作提出:在恰当的训练范式下,强化学习(RL)不仅能「打磨」已有能力,更能逼出「全新算法」级的推理模式。他们构建了一个专门验证这一命题的测试框架 DELTA,并观察到从「零奖励」到接近100%突破式跃迁的「RL grokking」现象。

来自主题: AI技术研报
7284 点击    2025-10-22 11:33
RewardMap: 通过多阶段强化学习解决细粒度视觉推理的Sparse Reward

RewardMap: 通过多阶段强化学习解决细粒度视觉推理的Sparse Reward

RewardMap: 通过多阶段强化学习解决细粒度视觉推理的Sparse Reward

近年来,大语言模型(LLMs)以及多模态大模型(MLLMs)在多种场景理解和复杂推理任务中取得突破性进展。

来自主题: AI技术研报
5818 点击    2025-10-21 15:53
AGILE:视觉学习新范式!自监督+交互式强化学习助力VLMs感知与推理全面提升

AGILE:视觉学习新范式!自监督+交互式强化学习助力VLMs感知与推理全面提升

AGILE:视觉学习新范式!自监督+交互式强化学习助力VLMs感知与推理全面提升

现有视觉语言大模型(VLMs)在多模态感知和推理任务上仍存在明显短板:1. 对图像中的细粒度视觉信息理解有限,视觉感知和推理能力未被充分激发;2. 强化学习虽能带来改进,但缺乏高质量、易扩展的 RL 数据。

来自主题: AI技术研报
6519 点击    2025-10-21 15:30
Meta用40万个GPU小时做了一个实验,只为弄清强化学习Scaling Law

Meta用40万个GPU小时做了一个实验,只为弄清强化学习Scaling Law

Meta用40万个GPU小时做了一个实验,只为弄清强化学习Scaling Law

在 LLM 领域,扩大强化学习算力规模正在成为一个关键的研究范式。但要想弄清楚 RL 的 Scaling Law 具体是什么样子,还有几个关键问题悬而未决:如何 scale?scale 什么是有价值的?RL 真的能如预期般 scale 吗?

来自主题: AI技术研报
8785 点击    2025-10-19 17:54