AI资讯新闻榜单内容搜索-强化学习

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 强化学习
四万字·深度求索|泛聊一下强化学习(RL)下的深度推理(DR)对真实世界(RW)建模与泛化的本质

四万字·深度求索|泛聊一下强化学习(RL)下的深度推理(DR)对真实世界(RW)建模与泛化的本质

四万字·深度求索|泛聊一下强化学习(RL)下的深度推理(DR)对真实世界(RW)建模与泛化的本质

强化学习·RL范式尝试为LLMs应用于广泛的Agentic AI甚至构建AGI打开了一扇“深度推理”的大门,而RL是否是唯一且work的一扇门,先按下不表(不作为今天跟大家唠的重点),至少目前看来,随着o1/o3/r1/qwq..等一众语言推理模型的快速发展,正推动着LLMs和Agentic AI在不同领域的价值与作用,

来自主题: AI技术研报
7947 点击    2025-06-13 10:48
「Next-Token」范式改变!刚刚,强化学习预训练来了

「Next-Token」范式改变!刚刚,强化学习预训练来了

「Next-Token」范式改变!刚刚,强化学习预训练来了

谁说强化学习只能是蛋糕上的樱桃,说不定,它也可以是整个蛋糕呢?

来自主题: AI技术研报
5177 点击    2025-06-11 14:58
OpenAI新模型,被曝秘密训练中!万字硬核长文直指o4核心秘密

OpenAI新模型,被曝秘密训练中!万字硬核长文直指o4核心秘密

OpenAI新模型,被曝秘密训练中!万字硬核长文直指o4核心秘密

SemiAnalysis全新硬核爆料,意外揭秘了OpenAI全新模型的秘密?据悉,新模型介于GPT-4.1和GPT-4.5之间,而下一代推理模型o4将基于GPT-4.1训练,而背后最大功臣,就是强化学习。

来自主题: AI技术研报
6279 点击    2025-06-11 12:20
强化学习之父:LLM主导只是暂时,扩展计算才是正解

强化学习之父:LLM主导只是暂时,扩展计算才是正解

强化学习之父:LLM主导只是暂时,扩展计算才是正解

大模型目前的主导地位只是暂时的,在未来五年甚至十年内都不会是技术前沿。 这是新晋图灵奖得主、强化学习之父Richard Sutton对未来的最新预测。

来自主题: AI资讯
8047 点击    2025-06-10 15:07
3B超越DeepSeek,大模型终于理解时间了!Time-R1一统过去/未来/生成

3B超越DeepSeek,大模型终于理解时间了!Time-R1一统过去/未来/生成

3B超越DeepSeek,大模型终于理解时间了!Time-R1一统过去/未来/生成

Time-R1通过三阶段强化学习提升模型的时间推理能力,其核心是动态奖励机制,根据任务难度和训练进程调整奖励,引导模型逐步提升性能,最终使3B小模型实现全面时间推理能力,超越671B模型。

来自主题: AI技术研报
6057 点击    2025-06-09 15:54
大模型强化学习新突破——SPO新范式助力大模型推理能力提升!

大模型强化学习新突破——SPO新范式助力大模型推理能力提升!

大模型强化学习新突破——SPO新范式助力大模型推理能力提升!

当前,强化学习(RL)在提升大语言模型(LLM)推理能力方面展现出巨大潜力。DeepSeek R1、Kimi K1.5 和 Qwen 3 等模型充分证明了 RL 在增强 LLM 复杂推理能力方面的有效性。

来自主题: AI技术研报
6360 点击    2025-06-09 11:02
扩展强化学习:环境、奖励黑客、智能体、数据扩展

扩展强化学习:环境、奖励黑客、智能体、数据扩展

扩展强化学习:环境、奖励黑客、智能体、数据扩展

Test time scaling范式蓬勃发展。推理模型持续快速改进,变得更为高效且价格更为亲民。在评估现实世界软件工程任务(如 SWE-Bench)时,模型以更低的成本取得了更高的分数。以下是显示模型变得更便宜且更优秀的图表。

来自主题: AI技术研报
5445 点击    2025-06-09 10:25
为什么用错奖励,模型也能提分?新研究:模型学的不是新知识,是思维

为什么用错奖励,模型也能提分?新研究:模型学的不是新知识,是思维

为什么用错奖励,模型也能提分?新研究:模型学的不是新知识,是思维

最近的一篇论文中,来自人大和腾讯的研究者们的研究表明,语言模型对强化学习中的奖励噪音具有鲁棒性,即使翻转相当一部分的奖励(例如,正确答案得 0 分,错误答案得 1 分),也不会显著影响下游任务的表现。

来自主题: AI技术研报
6519 点击    2025-06-08 14:35
首个多模态专用慢思考框架!超GPT-o1近7个百分点,强化学习教会VLM「三思而后行」

首个多模态专用慢思考框架!超GPT-o1近7个百分点,强化学习教会VLM「三思而后行」

首个多模态专用慢思考框架!超GPT-o1近7个百分点,强化学习教会VLM「三思而后行」

在文本推理领域,以GPT-o1、DeepSeek-R1为代表的 “慢思考” 模型凭借显式反思机制,在数学和科学任务上展现出远超 “快思考” 模型(如 GPT-4o)的优势。

来自主题: AI技术研报
6282 点击    2025-06-07 11:00