AI资讯新闻榜单内容搜索-强化学习

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 强化学习
Karpathy泼冷水:AGI要等10年!根本没有「智能体元年」

Karpathy泼冷水:AGI要等10年!根本没有「智能体元年」

Karpathy泼冷水:AGI要等10年!根本没有「智能体元年」

在近日的一次访谈中,Andrej Karpathy深入探讨了AGI、智能体与AI未来十年的走向。他认为当前的「智能体」仍处早期阶段,强化学习虽不完美,却是目前的最优解。他预测未来10年的AI架构仍然可能是类似Transformer的巨大神经网络。

来自主题: AI资讯
7245 点击    2025-10-19 12:48
多轮Agent训练遇到级联失效?熵控制强化学习来破局

多轮Agent训练遇到级联失效?熵控制强化学习来破局

多轮Agent训练遇到级联失效?熵控制强化学习来破局

在训练多轮 LLM Agent 时(如需要 30 + 步交互才能完成单个任务的场景),研究者遇到了一个严重的训练不稳定问题:标准的强化学习方法(PPO/GRPO)在稀疏奖励环境下表现出剧烈的熵值震荡,导致训练曲线几乎不收敛。

来自主题: AI技术研报
6133 点击    2025-10-19 12:06
稳定训练、数据高效,清华大学提出「流策略」强化学习新方法SAC Flow

稳定训练、数据高效,清华大学提出「流策略」强化学习新方法SAC Flow

稳定训练、数据高效,清华大学提出「流策略」强化学习新方法SAC Flow

本文介绍了一种用高数据效率强化学习算法 SAC 训练流策略的新方案,可以端到端优化真实的流策略,而无需采用替代目标或者策略蒸馏。SAC FLow 的核心思想是把流策略视作一个 residual RNN,再用 GRU  门控和 Transformer Decoder 两套速度参数化。

来自主题: AI技术研报
7075 点击    2025-10-19 11:48
动作波动率降低70%!清华发布工业控制专用神经网络模型 | TIV'25

动作波动率降低70%!清华发布工业控制专用神经网络模型 | TIV'25

动作波动率降低70%!清华发布工业控制专用神经网络模型 | TIV'25

在机器人与自动驾驶领域,由强化学习训练的控制策略普遍存在控制动作不平滑的问题。这种高频的动作震荡不仅会加剧硬件磨损、导致系统过热,更会在真实世界的复杂扰动下引发系统失稳,是阻碍强化学习走向现实应用的关键挑战。

来自主题: AI技术研报
7447 点击    2025-10-18 11:54
小米最新大模型成果!罗福莉现身了

小米最新大模型成果!罗福莉现身了

小米最新大模型成果!罗福莉现身了

小米的最新大模型科研成果,对外曝光了。就在最近,小米AI团队携手北京大学联合发布了一篇聚焦MoE与强化学习的论文。而其中,因为更早之前在DeepSeek R1爆火前转会小米的罗福莉,也赫然在列,还是通讯作者。

来自主题: AI技术研报
7722 点击    2025-10-17 16:44
RL微调,关键在前10%奖励!基于评分准则,Scale AI等提出新方法

RL微调,关键在前10%奖励!基于评分准则,Scale AI等提出新方法

RL微调,关键在前10%奖励!基于评分准则,Scale AI等提出新方法

大模型强化学习总是「用力过猛」?Scale AI联合UCLA、芝加哥大学的研究团队提出了一种基于评分准则(rubric)的奖励建模新方法,从理论和实验两个维度证明:要想让大模型对齐效果好,关键在于准确区分「优秀」和「卓越」的回答。这项研究不仅揭示了奖励过度优化的根源,还提供了实用的解决方案。

来自主题: AI技术研报
7384 点击    2025-10-17 09:48
北大彭一杰教授课题组提出RiskPO,用风险度量优化重塑大模型后训练

北大彭一杰教授课题组提出RiskPO,用风险度量优化重塑大模型后训练

北大彭一杰教授课题组提出RiskPO,用风险度量优化重塑大模型后训练

当强化学习(RL)成为大模型后训练的核心工具,「带可验证奖励的强化学习(RLVR)」凭借客观的二元反馈(如解题对错),迅速成为提升推理能力的主流范式。从数学解题到代码生成,RLVR 本应推动模型突破「已知答案采样」的局限,真正掌握深度推理逻辑 —— 但现实是,以 GRPO 为代表的主流方法正陷入「均值优化陷阱」。

来自主题: AI技术研报
6025 点击    2025-10-15 14:19
只需1/4预算,性能反超基线:阿里高德提出Tree-GRPO,高效破解智能体RL难题

只需1/4预算,性能反超基线:阿里高德提出Tree-GRPO,高效破解智能体RL难题

只需1/4预算,性能反超基线:阿里高德提出Tree-GRPO,高效破解智能体RL难题

对于大模型的强化学习已在数学推理、代码生成等静态任务中展现出不俗实力,而在需要与开放世界交互的智能体任务中,仍面临「两朵乌云」:高昂的 Rollout 预算(成千上万的 Token 与高成本的工具调用)和极其稀疏的「只看结果」的奖励信号。

来自主题: AI技术研报
7658 点击    2025-10-15 12:07