
10行代码,AIME24/25提高15%!揭秘大模型强化学习熵机制
10行代码,AIME24/25提高15%!揭秘大模型强化学习熵机制Nature never undertakes any change unless her interests are served by an increase in entropy. 自然界的任何变化,唯有在熵增符合其利益时方会发生——Max Planck
Nature never undertakes any change unless her interests are served by an increase in entropy. 自然界的任何变化,唯有在熵增符合其利益时方会发生——Max Planck
近期arxiv最热门论文,Qwen&清华LeapLab团队最新成果: 在强化学习训练大模型推理能力时,仅仅20%的高熵token就能撑起整个训练效果,甚至比用全部token训练还要好。
清华与蚂蚁联合开源AReaL-boba²,实现全异步强化学习训练系统,有效解耦模型生成与训练流程,GPU利用率大幅提升。14B模型在多个代码基准测试中达到SOTA,性能接近235B模型。异步RL训练上大分!
无监督的熵最小化(EM)方法仅需一条未标注数据和约10步优化,就能显著提升大模型在推理任务上的表现,甚至超越依赖大量数据和复杂奖励机制的强化学习(RL)。EM通过优化模型的预测分布,增强其对正确答案的置信度,为大模型后训练提供了一种更高效简洁的新思路。
强化学习(RL)到底是语言模型能力进化的「发动机」,还是只是更努力地背题、换个方式答题?这个问题,学界争论已久:RL 真能让模型学会新的推理技能吗,还是只是提高了已有知识的调用效率?
想训练属于自己的高性能推理模型,却被同步强化学习(RL)框架的低效率和高门槛劝退?AReaL 全面升级,更快,更强,更好用!
一项新的强化学习方法,直接让Qwen性能大增,GPT-4o被赶超!
推理模型常常表现出类似自我反思的行为,但问题是——这些行为是否真的能有效探索新策略呢?
「尽管经过 SFT 的模型可能看起来在进行推理,但它们的行为更接近于模式模仿 —— 一种缺乏泛化推理能力的伪推理形式。」
数据枯竭正成为AI发展的新瓶颈!CMU团队提出革命性方案SRT:让LLM实现无需人类标注的自我进化!SRT初期就能迭代提升数学与推理能力,甚至性能逼近传统强化学习的效果,揭示了其颠覆性潜力。