具身智能奇点已至!超越π*0.6,极佳视界自我进化VLA大模型拿下世界第一
具身智能奇点已至!超越π*0.6,极佳视界自我进化VLA大模型拿下世界第一极佳视界具身大模型 GigaBrain-0.5M*,以世界模型预测未来状态驱动机器人决策,并实现了持续自我进化,超越π*0.6 实现 SOTA!该模型在叠衣、冲咖啡、折纸盒等真实任务中实现接近 100% 成功率;相比主流基线方法任务成功率提升近 30%;基于超万小时数据训练,其中六成由自研世界模型高保真合成。
极佳视界具身大模型 GigaBrain-0.5M*,以世界模型预测未来状态驱动机器人决策,并实现了持续自我进化,超越π*0.6 实现 SOTA!该模型在叠衣、冲咖啡、折纸盒等真实任务中实现接近 100% 成功率;相比主流基线方法任务成功率提升近 30%;基于超万小时数据训练,其中六成由自研世界模型高保真合成。
来自清华大学、鹏城实验室与阿里巴巴未来生活实验室的联合研究团队发现:现有任务相关的压缩方法不仅陷入效率瓶颈——要么一次性加载全文(效率低),要么自回归逐步压缩(速度慢),更难以兼顾“保留关键信息”与“保持自然语言可解释性”。
2月7日,中文医疗大模型评测平台MedBench公布最新多模态大模型评测榜单,数坤科技的数坤坤多模态医学大模型V3以63.6分拿下第一。在榜单中,V3的表现超过微医、云知声旗下医疗行业大模型,以及OpenAI、谷歌、阿里千问旗下通用大模型。
基于真实居民健康档案构建的MedLLM-EHR-EVAL-V2评测集显示,星火医疗大模型在智能健康分析、报告解读、运动饮食建议、辅助诊疗、智能用药审核等关键任务上,得分均显著超越国内外主流大模型。
随着豆包大模型和seedance视频生成模型等业务的爆发,自研芯片成功后,字节有望大大降低其算力成本。
过去几年,大模型把自然语言处理彻底重塑了。GPT 出来之前,NLP 领域的状态是:每个任务一套模型,每个场景一批数据,每个公司一条流水线,互不通用,边界清晰。GPT 之后,这套逻辑被一个预训练底座 + 任务微调的范式整个替换掉了。
就是说,这几天还有哪档晚会节目是没有机器人现身的吗?
这两天 AI 圈真的太热闹了,就在网传 DeepSeek 要更新支持 100 万 Token 上下文的新模型时,MiniMax 率先冲锋,更新了他们的新旗舰模型:MiniMax-M2.5。更有意思的是,国外网友这段时间对国内 AI 大模型的更新节奏格外关注,他们甚至把这种争先更新的现象称为:Happy Chinese new year!
这个国产开源模型,把多模态玩出了“魔法”感。
春节还没到,「过年的气氛」已经渗入科技圈每个人的毛孔。单说 AI 大模型这一块,刚刚发布的有 kimi 2.5 和 Step 3.5 Flash,即将发布的据说还有 DeepSeek V4,GPT-5.3、Claude Sonnet 5、Qwen 3.5,GLM-5,说不定一觉醒来,现有的技术就要被颠覆。