SimKO:缓解RLVR训练中的概率过度集中,优化pass@K性能
SimKO:缓解RLVR训练中的概率过度集中,优化pass@K性能研究团队提出一种简洁且高效的算法 ——SimKO (Simple Pass@K Optimization),显著优化了 pass@K(K=1 及 K>1)性能。同时,团队认为当前的用熵(Entropy)作为指标衡量多样性存在局限:熵无法具体反映概率分布的形态。如图 2(c)所示,两个具有相同熵值的分布,一个可能包含多个峰值,而另一个则可能高度集中于一个峰值。
研究团队提出一种简洁且高效的算法 ——SimKO (Simple Pass@K Optimization),显著优化了 pass@K(K=1 及 K>1)性能。同时,团队认为当前的用熵(Entropy)作为指标衡量多样性存在局限:熵无法具体反映概率分布的形态。如图 2(c)所示,两个具有相同熵值的分布,一个可能包含多个峰值,而另一个则可能高度集中于一个峰值。
刚刚,唯一全国产算力训出的大模型重磅升级,推理效率飙升100%,数学能力国际领先。当全球巨头还在云端「卷」算法时,中国队则亮出了软硬一体这一截然不同的底牌。
近期,Google DeepMind 发布新一代具身大模型 Gemini Robotics 1.5,其核心亮点之一便是被称为 Motion Transfer Mechanism(MT)的端到端动作迁移算法 —— 无需重新训练,即可把不同形态机器人的技能「搬」到自己身上。不过,官方技术报告对此仅一笔带过,细节成谜。
十年前,「黑手党」这个词还属于PayPal。十年后,它成了OpenAI。那些离开OpenAI的人,没有远去,而是在外部重建另一个OpenAI。他们互相投资、互相背书,从算法到资本,织出一张无形的权力网。AI的故事,看似在讲技术,其实是在讲权力的继承。当算法学会模仿人类,人类也在用算法,复制自己的帝国。
当下的文本生成图像扩散模型取得了长足进展,为图像生成引入布局控制(Layout-to-Image, L2I)成为可能。
随着 AI 技术的发展,大语言模型已经越来越多地应用于人们的日常生活中。需要了解的是,现阶段大语言模型面临版权保护的实际需求:
当医生按下Enter键,AI就能决定人的生死!美国华盛顿大学,一项名为「AI代理人」的研究,试图让算法预测昏迷患者的生死意愿。支持者说这是医疗新纪元,反对者担心它只是复制偏见的机器。当AI学会理解生命,人类的怜悯、犹豫与责任,会不会被一串数据取代?
论文第一作者何浩然是香港科技大学博士生,研究方向包括强化学习和基础模型等,研究目标是通过经验和奖励激发超级智能。共同第一作者叶语霄是香港科技大学一年级博士。通讯作者为香港科技大学电子及计算机工程系、计
今天,谷歌DeepMind重磅发起「AI赋能数学计划」,集结了全球五大顶尖机构。他们将用上谷歌最强数学AI,去探索发现新的疆域。这其中,有夺下IMO金牌的Gemini Deep Think,有算法发现AI智能体AlphaEvolve,还有形式化证明自动补全AlphaProof。
强化学习是近来 AI 领域最热门的话题之一,新算法也在不断涌现。