AI资讯新闻榜单内容搜索-泛化

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 泛化
VinciCoder:多模态统一代码生成框架和视觉反馈强化学习,数据代码模型权重已开源

VinciCoder:多模态统一代码生成框架和视觉反馈强化学习,数据代码模型权重已开源

VinciCoder:多模态统一代码生成框架和视觉反馈强化学习,数据代码模型权重已开源

长期以来,多模态代码生成(Multimodal Code Generation)的训练严重依赖于特定任务的监督微调(SFT)。尽管这种范式在 Chart-to-code 等单一任务上取得了显著成功 ,但其 “狭隘的训练范围” 从根本上限制了模型的泛化能力,阻碍了通用视觉代码智能(Generalized VIsioN Code Intelligence)的发展 。

来自主题: AI技术研报
8272 点击    2025-11-17 14:32
只演示一次,机器人就会干活了?北大&BeingBeyond联合团队用“分层小脑+仿真分身”让G1零样本上岗

只演示一次,机器人就会干活了?北大&BeingBeyond联合团队用“分层小脑+仿真分身”让G1零样本上岗

只演示一次,机器人就会干活了?北大&BeingBeyond联合团队用“分层小脑+仿真分身”让G1零样本上岗

近日,来自北京大学与BeingBeyond的研究团队提出DemoHLM框架,为人形机器人移动操作(loco-manipulation)领域提供一种新思路——仅需1次仿真环境中的人类演示,即可自动生成海量训练数据,实现真实人形机器人在多任务场景下的泛化操作,有效解决了传统方法依赖硬编码、真实数据成本高、跨场景泛化差的核心痛点。

来自主题: AI技术研报
7585 点击    2025-11-14 09:44
NeurIPS 2025 Spotlight | 你刷到的视频是真的么?用物理规律拆穿Sora谎言

NeurIPS 2025 Spotlight | 你刷到的视频是真的么?用物理规律拆穿Sora谎言

NeurIPS 2025 Spotlight | 你刷到的视频是真的么?用物理规律拆穿Sora谎言

随着生成式 AI(如 Sora)的发展,合成视频几乎可以以假乱真,带来了深度伪造与虚假信息传播的风险。现有检测方法多依赖表层伪影或数据驱动学习,难以在高质量生成视频中保持较好的泛化能力。其根本原因在于,这些方法大都未能充分利用自然视频所遵循的物理规律,挖掘自然视频的更本质的特征。

来自主题: AI技术研报
8182 点击    2025-11-06 09:39
具身智能一步踏入Scaling Law!10B+基础模型,27万小时真实数据

具身智能一步踏入Scaling Law!10B+基础模型,27万小时真实数据

具身智能一步踏入Scaling Law!10B+基础模型,27万小时真实数据

当前机器人领域,基础模型主要基于「视觉-语言预训练」,这样可将现有大型多模态模型的语义泛化优势迁移过来。但是,机器人的智能确实能随着算力和数据的增加而持续提升吗?我们能预测这种提升吗?

来自主题: AI技术研报
5904 点击    2025-11-05 16:42
字节发布通用游戏智能体!5000亿token训练,用鼠标键盘吊打GPT-5!

字节发布通用游戏智能体!5000亿token训练,用鼠标键盘吊打GPT-5!

字节发布通用游戏智能体!5000亿token训练,用鼠标键盘吊打GPT-5!

Game-TARS基于统一、可扩展的键盘—鼠标动作空间训练,可在操作系统、网页与模拟环境中进行大规模预训练。依托超5000亿标注量级的多模态训练数据,结合稀疏推理(Sparse-Thinking) 与衰减持续损失(decaying continual loss),大幅提升了智能体的可扩展性和泛化性。

来自主题: AI技术研报
7393 点击    2025-11-01 09:42
均值至上假繁荣!北大新作专挑难题,逼出AI模型真本事

均值至上假繁荣!北大新作专挑难题,逼出AI模型真本事

均值至上假繁荣!北大新作专挑难题,逼出AI模型真本事

大模型后训练的痛点:均值优化忽略低概率高信息路径,导致推理能力停滞。RiskPO双管齐下,MVaR目标函数推导梯度估计,多问题捆绑转化反馈,实验中Geo3K准确率54.5%,LiveCodeBench Pass@1提升1%,泛化能力强悍。

来自主题: AI技术研报
6456 点击    2025-10-25 14:32
机器人「看片」自学新技能:NovaFlow从生成视频中提取动作流,实现零样本操控

机器人「看片」自学新技能:NovaFlow从生成视频中提取动作流,实现零样本操控

机器人「看片」自学新技能:NovaFlow从生成视频中提取动作流,实现零样本操控

构建能够在新环境中、无需任何针对性训练就能执行多样化任务的通用机器人,是机器人学领域一个长期追逐的圣杯。近年来,随着大型语言模型(LLMs)和视觉语言模型(VLMs)的飞速发展,许多研究者将希望寄托于视觉 - 语言 - 动作(VLA)模型,期望它们能复刻 LLM 和 VLM 在泛化性上取得的辉煌。

来自主题: AI技术研报
7566 点击    2025-10-13 11:02
RL 将如何提高具身大模型 VLA 泛化性?清华大学团队NeurIPS 2025文章分析 RL 与 SFT 泛化性差异

RL 将如何提高具身大模型 VLA 泛化性?清华大学团队NeurIPS 2025文章分析 RL 与 SFT 泛化性差异

RL 将如何提高具身大模型 VLA 泛化性?清华大学团队NeurIPS 2025文章分析 RL 与 SFT 泛化性差异

在具身智能领域,视觉 - 语言 - 动作(VLA)大模型正展现出巨大潜力,但仍面临一个关键挑战:当前主流的有监督微调(SFT)训练方式,往往让模型在遇到新环境或任务时容易出错,难以真正做到类人般的泛化

来自主题: AI技术研报
8290 点击    2025-10-13 10:28
Meta FAIR田渊栋唯一作者发文:拆解模型「顿悟时刻」

Meta FAIR田渊栋唯一作者发文:拆解模型「顿悟时刻」

Meta FAIR田渊栋唯一作者发文:拆解模型「顿悟时刻」

早在 2021 年,研究人员就已经发现了深度神经网络常常表现出一种令人困惑的现象,模型在早期训练阶段对训练数据的记忆能力较弱,但随着持续训练,在某一个时间点,会突然从记忆转向强泛化。

来自主题: AI技术研报
8320 点击    2025-10-07 22:06