用155万模拟视频给模型上课!GVE模型一次学会9种视频检索技能
用155万模拟视频给模型上课!GVE模型一次学会9种视频检索技能当前视频检索研究正陷入一个闭环困境:以MSRVTT为代表的窄域基准,长期主导模型在粗粒度文本查询上的优化,导致训练数据有偏、模型能力受限,难以应对真实世界中细粒度、长上下文、多模态组合等复杂检索需求。
当前视频检索研究正陷入一个闭环困境:以MSRVTT为代表的窄域基准,长期主导模型在粗粒度文本查询上的优化,导致训练数据有偏、模型能力受限,难以应对真实世界中细粒度、长上下文、多模态组合等复杂检索需求。
从影像诊断到手术指导,从多语言问诊到罕见病推理—— 医学AI正在从“专科助手”进化为“全能型选手”。
刚刚,文心5.0正式发布了!全新一代主打原生全模态,最开始就把语言/图像/视频/音频放在同一套自回归统一架构里,做统一的理解与生成训练。所以,最终模型能够做到支持全模态输入(文字/图片/音频/视频)+全模态输出(文字/图片/音频/视频),创意写作、指令遵循、智能体规划方面也更强了。
谷歌DeepMind的IMO金牌模型,完整技术全公开了!
中国最早进行医疗大模型后训练的创新企业之一 ——杭州全诊医学科技有限公司(以下简称“全诊医学”)正式宣布完成1亿元B轮融资:2024年4季度由A股上市公司“创新医疗”(SZ.002173)完成战略轮投资;2025年2季度由中国医药工业百强“好医生集团”完成B轮投资,探针资本担任本轮融资的独家财务顾问。
就在今天,李飞飞发布了全新的世界模型,开启公测,人人可玩。
提到 AI 的突破,人们首先想到的往往是大语言模型(LLM):写代码、生成文本、甚至推理多模态内容,几乎重塑了通用智能的边界。但在一个看似 “简单” 的领域 —— 结构化表格数据上,这些强大的模型却频频失手。
本文档分析 CAMEL 项目中 hybrid_browser_toolkit 的技术实现,覆盖其架构设计、核心功能与通信协议。
我们都知道 LLM 中存在结构化稀疏性,但其底层机制一直缺乏统一的理论解释。为什么模型越深,稀疏性越明显?为什么会出现所谓的「检索头」和「检索层」?
目前,GRPO 在图像和视频生成的流模型中取得了显著提升(如 FlowGRPO 和 DanceGRPO),已被证明在后训练阶段能够有效提升视觉生成式流模型的人类偏好对齐、文本渲染与指令遵循能力。