
Bengio亲手戳穿CoT神话!LLM推理是假象,25%顶会论文遭打脸
Bengio亲手戳穿CoT神话!LLM推理是假象,25%顶会论文遭打脸原来,CoT推理竟是假象!Bengio带队最新论文戳穿了CoT神话——我们所看到的推理步骤,并非是真实的。不仅如此,LLM在推理时会悄然纠正错误,却在CoT中只字未提。
原来,CoT推理竟是假象!Bengio带队最新论文戳穿了CoT神话——我们所看到的推理步骤,并非是真实的。不仅如此,LLM在推理时会悄然纠正错误,却在CoT中只字未提。
本文第一作者是上海交通大学计算机学院三年级博士生程彭洲,研究方向为多模态大模型推理、AI Agent、Agent 安全等。通讯作者为张倬胜助理教授和刘功申教授。
多模态对齐模型借助对比学习在检索与生成任务中大放异彩。最新趋势是用冻结的大语言模型替换自训文本编码器,从而在长文本与大数据场景中降低算力成本。LIFT首次系统性地剖析了此范式的优势来源、数据适配性、以及关键设计选择,在组合语义理解与长文本任务上观察到大幅提升。
混合专家网络模型架构(MoE)已经成为当前大模型的一个主流架构选择,以最近开源的盘古Pro MoE为例
设定角色,让AI照“本”生成主角不变的不同图像,对于各路AIGC工具来说一直是不小的挑战。
「聊天界面,本质上是一种懒惰的产物。」大多数 AI 产品都在做 chatbot。对话框是最简单直接的人类与 AI 交互的「接口」,同时也是一个 AI 产品最低成本上线的方式。
自从 Transformer 问世,NLP 领域发生了颠覆性变化。大语言模型极大提升了文本理解与生成能力,成为现代 AI 系统的基础。而今,AI 正不断向前,具备自主决策和复杂交互能力的新一代 AI Agent 也正加速崛起。
近年来,随着扩散模型(Diffusion Models)、Transformer 架构与高性能视觉理解模型的蓬勃发展,视频生成任务取得了令人瞩目的进展。从静态图像生成视频的任务(Image-to-Video generation)尤其受到关注,其关键优势在于:能够以最小的信息输入生成具有丰富时间连续性与空间一致性的动态内容。
将大语言模型(LLMs)与复杂的人类价值观对齐,仍然是 AI 面临的一个核心挑战。当前主要的方法是基于人类反馈的强化学习(RLHF)。该流程依赖于一个通过人类偏好训练的奖励模型来对模型输出进行评分,最终对齐后的 LLM 的质量在根本上取决于该奖励模型的质量。
美国加州两起判决首次认定:AI公司扫描购买的正版书籍用于模型训练属合理使用,训练行为具变革性也属合理使用,但盗版素材获取仍侵权。中美监管宽松利于AI产业发展,欧盟严格规定要求素材许可或提供退出选项。AI输出侵权内容或诱导输出训练素材存在争议。