Z Tech|ICLR 2026字节发布:从短句到篇章,DiscoX为长文翻译提供评测新范式
Z Tech|ICLR 2026字节发布:从短句到篇章,DiscoX为长文翻译提供评测新范式DiscoX构建了一套200题的长文翻译数据集,以平均长度1,712 tokens的长篇章做评测单元,要求整个长文文本作为一个整体来翻译,除翻译准确度外,重点考察跨段落的逻辑与风格一致性、上下文中的术语精确性、以及专业写作规范,贴合用户真实的使用场景。
DiscoX构建了一套200题的长文翻译数据集,以平均长度1,712 tokens的长篇章做评测单元,要求整个长文文本作为一个整体来翻译,除翻译准确度外,重点考察跨段落的逻辑与风格一致性、上下文中的术语精确性、以及专业写作规范,贴合用户真实的使用场景。
来自上海交通大学、清华大学、微软研究院、麻省理工学院(MIT)、上海 AI Lab、小红书、阿里巴巴、港科大(广州)等机构的研究团队,系统梳理了近年来大语言模型在数据准备流程中的角色变化,试图回答一个业界关心的问题:LLM 能否成为下一代数据管道的「智能语义中枢」,彻底重构数据准备的范式?
机器人领域是我们长期关注的赛道,而 Generalist 是当前机器人领域中极少数具备长期竞争潜力的公司,核心优势集中在数据规模、团队能力与清晰的 scaling 路径上。
为什么让多模态大模型“一步一步思考”(”Let’s think step by step”)来回答视频问题,效果有时甚至还不如让它“直接回答”?
视觉模型用于工业“缺陷检测”等领域已经相对成熟,但当前普遍使用的传统模型在训练时对数据要求较高,需要大量的经过精细标注的数据才能训练出理想效果。
Deepmind推出的SIMA 2,让智能体能在虚拟环境(商业游戏)中,边聊天边进行复杂的多模态推理。作为具身通用智能的原型,SIMA 2已从静态数据集迈向无限程序化生成的训练场。
想象一下,你正在训练一个未来的家庭机器人。你希望它能像人一样,轻松地叠好一件衬衫,整理杂乱的桌面,甚至系好一双鞋的鞋带。但最大的瓶颈是什么?不是算法,不是硬件,而是数据 —— 海量的、来自真实世界的、双手协同的、长程的、多模态的高质量数据。
近日,多模态视频理解领域迎来重磅更新!由复旦大学、上海财经大学、南洋理工大学联合打造的 MeViSv2 数据集正式发布,并已被顶刊 IEEE TPAMI 录用。
科技赛道从不缺“造梦者”,但能精准击中行业痛点的“破局者”往往寥寥。
作者提出了一个大规模、高质量、多类别的指令跟随的视频编辑数据集 OpenVE-3M,共包含 3M 样本对,分为空间对齐和非空间对齐 2 大类别共 8 小类别。