可控核聚变新里程碑,AI首次实现双托卡马克3D场全自动优化,登Nature子刊
可控核聚变新里程碑,AI首次实现双托卡马克3D场全自动优化,登Nature子刊几十年来,核聚变释放能量的「精妙」过程一直吸引着科学家们的研究兴趣。 现在,在普林斯顿等离子体物理实验室(PPPL)中 ,科学家正借助人工智能,来解决人类面临的紧迫挑战:通过聚变等离子体产生清洁、可靠的能源。 与传统的计算机代码不同,机器学习不仅仅是指令列表,它可以分析数据、推断特征之间的关系、从新知识中学习并适应。
几十年来,核聚变释放能量的「精妙」过程一直吸引着科学家们的研究兴趣。 现在,在普林斯顿等离子体物理实验室(PPPL)中 ,科学家正借助人工智能,来解决人类面临的紧迫挑战:通过聚变等离子体产生清洁、可靠的能源。 与传统的计算机代码不同,机器学习不仅仅是指令列表,它可以分析数据、推断特征之间的关系、从新知识中学习并适应。
一直以来 AI 都是一个黑盒子(black box),其内部运作机制是不可见的。人们输入数据并得到结果,但无法检查输出结果的逻辑或者系统的代码。 而就在刚刚,Anthropic 宣布在理解人工智能模型内部运作机制方面取得重大进展。
在多标签图像识别领域中,由于图像本身和潜在标签类别的复杂性,收集满足现有模型训练的多标签标注信息往往成本高昂且难以拓展。中山大学联合广东工业大学联手探索标注受限情况下的多标签图像识别任务,通过对多标签图像中的强语义相关性的探索研究,提出了一种异构语义转移(Heterogeneous Semantic Transfer, HST) 框架,实现了有效的未知标签生成。
数学领域,以其廉价的数据及问题的严谨性,成为了人工智能辅助发现的理想试验场,但唯有人类自己,才能区分出好猜想和坏猜想。
智东西5月22日消息,昨晚,95后华裔天才Alexander Wang宣布,其创办的美国AI数据标注创企Scale AI获得10亿美元F轮融资,估值翻倍至138亿美元(折合约999亿人民币)。
字节大模型团队,终于曝光! 这不是,字节刚刚启动大模型校招计划,招揽人才嘛—— 计划取名Top Seed,薪资TOP级别、算力数据管够,但仅面向应届博士生;前沿课题覆盖大模型、图像&视频生成、机器学习算法和系统以及音频生成和理解等方向。 另外还有一帮顶尖的技术导师团带队……等等,这不就是字节豆包大模型的背后团队吗?
近年来,「scaling」是计算机视觉研究的主角之一。随着模型尺寸和训练数据规模的增大、学习算法的进步以及正则化和数据增强等技术的广泛应用,通过大规模训练得到的视觉基础网络(如 ImageNet1K/22K 上训得的 Vision Transformer、MAE、DINOv2 等)已在视觉识别、目标检测、语义分割等诸多重要视觉任务上取得了令人惊艳的性能。
近日,西交微软北大联合提出信息密集型训练大法,使用纯数据驱动的方式,矫正LLM训练过程产生的偏见,在一定程度上治疗了大语言模型丢失中间信息的问题。
近日,又一惊人结论登上Hacker News热榜:没有指数级数据,就没有Zero-shot!多模态模型被扒实际上没有什么泛化能力,生成式AI的未来面临严峻挑战。
A16z(Andreessen Horowitz)可能是最会做内容的投资公司。他们在官网上发表的很多 AI 时代的创业思考和观察,都是很值得阅读的好文章。