全球第二、国内第一!钉钉发布DeepResearch多智能体框架,已在真实企业部署
全球第二、国内第一!钉钉发布DeepResearch多智能体框架,已在真实企业部署在数字经济浪潮中,企业对于高效、精准的信息获取与决策支持的需求日益迫切。从前沿科学探索到行业趋势分析,再到企业级决策支持,一个能够从海量异构数据源中提取关键知识、执行多步骤推理并生成结构化或多模态输出的「深度研究系统」正变得不可或缺。
在数字经济浪潮中,企业对于高效、精准的信息获取与决策支持的需求日益迫切。从前沿科学探索到行业趋势分析,再到企业级决策支持,一个能够从海量异构数据源中提取关键知识、执行多步骤推理并生成结构化或多模态输出的「深度研究系统」正变得不可或缺。
LLM Agent 正以前所未有的速度发展,从网页浏览、软件开发到具身控制,其强大的自主能力令人瞩目。然而,繁荣的背后也带来了研究的「碎片化」和能力的「天花板」:多数 Agent 在可靠规划、长期记忆、海量工具管理和多智能体协调等方面仍显稚嫩,整个领域仿佛一片广袤却缺乏地图的丛林。
现有的LLM智能体训练框架都是针对单智能体的,多智能体的“群体强化”仍是一个亟须解决的问题。为了解决这一领域的研究痛点,来自UCSD和英特尔的研究人员,提出了新的提出通用化多智能体强化学习框架——PettingLLMs。支持任意组合的多个LLM一起训练。
静态编排 VS 动态编排,谁是多agent系统最优解?通常来说,面对简单问题,采用react模式的单一agent就能搞定。可遇到复杂问题,单一agent就会立刻出现包括但不限于以下问题:串行执行效率低:无法同时完成并行的子步骤(如 “同时爬取 A、B 两个网站的数据”)。
在人工智能领域,推理语言模型(RLM)虽然在数学与编程任务中已展现出色性能,但在像医学这样高度依赖专业知识的场景中,一个亟待回答的问题是:复杂的多步推理会帮助模型提升医学问答能力吗?要回答这个问题,需要构建足够高质量的医学推理数据,当前医学推理数据的构建存在以下挑战:
年初的 DeepSeek-R1,带来了大模型强化学习(RL)的火爆。无论是数学推理、工具调用,还是多智能体协作,GRPO(Group Relative Policy Optimization)都成了最常见的 RL 算法。
近日,来自阿联酋穆罕默德·本·扎耶德人工智能大学 MBZUAI 和保加利亚 INSAIT 研究所的研究人员发现一个针对大模型单次推理的“法诺式准确率上限”,借此不仅揭示了单次生成范式的根本性脆弱点,也揭示了“准确率悬崖”这一现象。
AutoGame 创始人张昊阳离开腾讯后,带领团队打造的 AI 游戏《麦琪的花园》在 Steam 零推广登上新品榜 Top50,一个月积累超 5000 愿望单。通过自研 GameGPT 多智能体框架和大模型架构,他们让普通玩家能“一句话生成 NPC、任务与道具”,将 UGC 创作门槛降至短视频级别,把传统“金字塔型”内容生态变为“十字型”社交表达平台。
在几天前的开发者大会上,OpenAI 发布了一套面向开发者和企业的完整工具集 AgentKit。其中,可视化画布 Agent Builder 用于创建、管理和版本化多智能体工作流,通过拖拽节点的方式即可编辑工作流。
机器之心报道 编辑:泽南 真正实用化的生成式 AI,应该是这个样子 —— 作为助手可以帮你代打电话,根据你的选项进行应答,还能引导对方转人工: 功能覆盖多个场景,连接大量第三方应用,实现多智能体的一键