NeurIPS 2025 | 上下文元学习实现不微调跨被试脑活动预测
NeurIPS 2025 | 上下文元学习实现不微调跨被试脑活动预测人类高级视觉皮层在个体间存在显著的功能差异,而构建大脑编码模型(brain encoding models)—— 即能够从视觉刺激(如图像)预测人脑神经响应的计算模型 —— 是理解人类视觉系统如何表征世界的关键。传统视觉编码模型通常需要为每个新被试采集大量数据(数千张图像对应的脑活动),成本高昂且难以推广。
人类高级视觉皮层在个体间存在显著的功能差异,而构建大脑编码模型(brain encoding models)—— 即能够从视觉刺激(如图像)预测人脑神经响应的计算模型 —— 是理解人类视觉系统如何表征世界的关键。传统视觉编码模型通常需要为每个新被试采集大量数据(数千张图像对应的脑活动),成本高昂且难以推广。
Claude 近期发布的 Skills 功能很火,不少开发者都在尝试、试用。
AI Agent 在处理复杂任务时经常“掉链子”。你刚告诉它的信息,它很快就忘了。给它的工具越多,它反而越混乱。这不是个例。
谷歌在第三天发布了《上下文工程:会话与记忆》(Context Engineering: Sessions & Memory) 白皮书。文中开篇指出,LLM模型本身是无状态的 (stateless)。如果要构建有状态的(stateful)和个性化的 AI,关键在于上下文工程。
当前视频检索研究正陷入一个闭环困境:以MSRVTT为代表的窄域基准,长期主导模型在粗粒度文本查询上的优化,导致训练数据有偏、模型能力受限,难以应对真实世界中细粒度、长上下文、多模态组合等复杂检索需求。
在处理短文本时,大语言模型(LLM)已经表现出惊人的理解和生成能力。但现实世界中的许多任务 —— 如长文档理解、复杂问答、检索增强生成(RAG)等 —— 都需要模型处理成千上万甚至几十万长度的上下文。
大模型「灾难性遗忘」问题或将迎来突破。近日,NeurIPS 2025收录了谷歌研究院的一篇论文,其中提出一种全新的「嵌套学习(Nested Learning)」架构。实验中基于该框架的「Hope」模型在语言建模与长上下文记忆任务中超越Transformer模型,这意味着大模型正迈向具备自我改进能力的新阶段。
太快了!一天之内Grok连迎两大更新——Grok 4 Fast与Grok Imagine都进行了大升级。Grok 4 Fast把上下文窗口提高到2M,并把完成率拉到94.1%(推理)与97.9%(非推理)。这意味着,你不必再把一本书或一整个代码库切碎喂给模型,它可以一次吞下,然后稳定地给出结果。
如果你也在做 RAG 或智能体应用,大概经历过这些瞬间:文档切得太碎,答案失去上下文;切得太大,又召回不准;加了更多提示词,效果可能更不稳定。
静态编排 VS 动态编排,谁是多agent系统最优解?通常来说,面对简单问题,采用react模式的单一agent就能搞定。可遇到复杂问题,单一agent就会立刻出现包括但不限于以下问题:串行执行效率低:无法同时完成并行的子步骤(如 “同时爬取 A、B 两个网站的数据”)。