
Llama都在用的RoPE有了视频版,复旦上海AI Lab等提出长视频理解/检索绝佳拍档
Llama都在用的RoPE有了视频版,复旦上海AI Lab等提出长视频理解/检索绝佳拍档Llama都在用的RoPE(旋转位置嵌入)被扩展到视频领域,长视频理解和检索更强了。
Llama都在用的RoPE(旋转位置嵌入)被扩展到视频领域,长视频理解和检索更强了。
刚刚,阶跃星辰联合吉利汽车集团,开源了两款多模态大模型!新模型共2款:全球范围内参数量最大的开源视频生成模型Step-Video-T2V行业内首款产品级开源语音交互大模型Step-Audio多模态卷王开始开源多模态模型,其中Step-Video-T2V采用的还是最为开放宽松的MIT开源协议,可任意编辑和商业应用。
在当下的技术领域中,人像视频生成(Human-Video-Animation)作为一个备受瞩目的研究方向,正不断取得新的进展。人像视频生成 (Human-Video-Animation) 是指从某人物的视频中获取肢体动作和面部表情序列,来驱动其他人物个体的参考图像来生成视频。
7B大小的视频理解模型中的新SOTA,来了!
今天向大家介绍一项来自香港大学黄超教授实验室的最新科研成果 VideoRAG。这项创新性的研究突破了超长视频理解任务中的时长限制,仅凭单张 RTX 3090 GPU (24GB) 就能高效理解数百小时的超长视频内容。
人类通过课堂学习知识,并在实践中不断应用与创新。那么,多模态大模型(LMMs)能通过观看视频实现「课堂学习」吗?新加坡南洋理工大学S-Lab团队推出了Video-MMMU——全球首个评测视频知识获取能力的数据集,为AI迈向更高效的知识获取与应用开辟了新路径。
针对视频生成中的运动一致性难题,Meta GenAI团队提出了一个全新框架VideoJAM。VideoJAM基于主流的DiT路线,但和Sora等纯DiT模型相比,动态效果直接拉满:
近日,北京航空航天大学的研究团队基于 TinyLLaVA_Factory 的原项目,推出小尺寸简易视频理解框架 TinyLLaVA-Video,其模型,代码以及训练数据全部开源。在计算资源需求显著降低的前提下,训练出的整体参数量不超过 4B 的模型在多个视频理解 benchmark 上优于现有的 7B + 模型。
现在,豆包大模型团队联合北京交通大学、中国科学技术大学提出了VideoWorld。
在过去的两年里,城市场景生成技术迎来了飞速发展,一个全新的概念 ——世界模型(World Model)也随之崛起。当前的世界模型大多依赖 Video Diffusion Models(视频扩散模型)强大的生成能力,在城市场景合成方面取得了令人瞩目的突破。然而,这些方法始终面临一个关键挑战:如何在视频生成过程中保持多视角一致性?