
对话硅谷公司K-Scale:在车库里对抗烧钱的巨头们,带全人类一起造10亿机器人
对话硅谷公司K-Scale:在车库里对抗烧钱的巨头们,带全人类一起造10亿机器人第一次拜访K-Scale Labs的时候,好像走进了美剧《硅谷》的拍摄现场。
第一次拜访K-Scale Labs的时候,好像走进了美剧《硅谷》的拍摄现场。
随着人工智能(AI)技术的迅猛发展,特别是大语言模型(LLMs)如 GPT-4 和视觉语言模型(VLMs)如 CLIP 和 DALL-E,这些模型在多个技术领域取得了显著的进展。
视觉大语言模型在最基础的视觉任务上集体「翻车」,即便是简单的图形识别都能难倒一片,或许这些最先进的VLM还没有发展出真正的视觉能力?
当前的视觉语言模型(VLM)主要通过 QA 问答形式进行性能评测,而缺乏对模型基础理解能力的评测,例如 detail image caption 性能的可靠评测手段。
四大 VLM,竟都在盲人摸象?
当前主流的视觉语言模型(VLM)主要基于大语言模型(LLM)进一步微调。因此需要通过各种方式将图像映射到 LLM 的嵌入空间,然后使用自回归方式根据图像 token 预测答案。
近些年,语言建模领域进展非凡。Llama 或 ChatGPT 等许多大型语言模型(LLM)有能力解决多种不同的任务,它们也正在成为越来越常用的工具。
开源多模态SOTA模型再易主!Hugging Face开发者大使刚刚把王冠交给了CogVLM2,来自大模型创业公司智谱AI。CogVLM2甚至在3项基准测试上超过GPT-4v和Gemini Pro,还不是超过一点,是大幅领先。
当计算预算低时,重复使用高质量数据更好;当不差钱时,使用大量数据更有利。
哈工大联合度小满推出针对多模态模型的自适应剪枝算法 SmartTrim,论文已被自然语言处理顶级会议 COLING 24 接收。