
机器人感知大升级!轻量化注入几何先验,成功率提升31%
机器人感知大升级!轻量化注入几何先验,成功率提升31%VLA模型通常建立在预训练视觉语言模型(VLM)之上,仅基于2D图像-文本数据训练,缺乏真实世界操作所需的3D空间理解能力。
VLA模型通常建立在预训练视觉语言模型(VLM)之上,仅基于2D图像-文本数据训练,缺乏真实世界操作所需的3D空间理解能力。
最近,千寻智能的研究人员注意到,基于模仿学习的视觉运动策略中也存在类似现象,并在论文《Do You Need Proprioceptive States in Visuomotor Policies?》中对此进行了深入探讨。
LightVLA 是一个旨在提升 VLA 推理效率且同时提升性能的视觉 token 剪枝框架。当前 VLA 模型在具身智能领域仍面临推理代价大而无法大规模部署的问题,然而大多数免训练剪枝框架依赖于中间注意力输出,并且会面临性能与效率的权衡问题。
视觉-语言-动作模型是实现机器人在复杂环境中灵活操作的关键因素。然而,现有训练范式存在一些核心瓶颈,比如数据采集成本高、泛化能力不足等。
在多模态大模型的基座上,视觉 - 语言 - 动作(Visual-Language-Action, VLA)模型使用大量机器人操作数据进行预训练,有望实现通用的具身操作能力。
具身智能机器人赛道又迎来一笔重磅融资。ZP独家获悉,智平方(AI² Robotics)近期完成由深创投领投的新一轮A系列融资,深创投单家超过亿元投资。
“机器人运动会结束以来,公司的400咨询电话一直没有停过,比赛后第二周就有十几家酒店客户来公司参观。”优理奇(Unix AI)的创始人、CEO杨丰瑜告诉《智能涌现》。
仅凭少量后训练微调,机器人就能完全自主、连续不断地完成床铺整理任务。 而它的每一步思考与动作实时投放在大屏幕上。
8 月 11 日,在世界机器人大会上,阿里达摩院宣布开源自研的 VLA 模型 RynnVLA-001-7B、世界理解模型 RynnEC、以及机器人上下文协议 RynnRCP ,推动数据、模型和机器人的兼容适配,打通具身智能开发全流程。
硅星人独家了解到,星海图即将开源全球首个开放场景高质量真机数据集Galaxea Open-World Dataset,及其G0-快慢双系统全身智能VLA模型。这一举动无疑在相对各自为战的机器人行业打开了一条新的路径。