
扩散LLM推理新范式:打破生成长度限制,实现动态自适应调节
扩散LLM推理新范式:打破生成长度限制,实现动态自适应调节随着 Gemini-Diffusion,Seed-Diffusion 等扩散大语言模型(DLLM)的发布,这一领域成为了工业界和学术界的热门方向。但是,当前 DLLM 存在着在推理时必须采用预设固定长度的限制,对于不同任务都需要专门调整才能达到最优效果。
随着 Gemini-Diffusion,Seed-Diffusion 等扩散大语言模型(DLLM)的发布,这一领域成为了工业界和学术界的热门方向。但是,当前 DLLM 存在着在推理时必须采用预设固定长度的限制,对于不同任务都需要专门调整才能达到最优效果。
近日,一项由北京大学、字节跳动 Seed 团队及香港大学联合进行的研究,提出了一种名为「SWE-Swiss」的完整「配方」,旨在高效训练用于解决软件工程问题的 AI 模型。研究团队推出的 32B 参数模型 SWE-Swiss-32B,在权威基准 SWE-bench Verified 上取得了 60.2% 的准确率,在同尺寸级别中达到了新的 SOTA。
不仅能达IMO银牌水准,更能解决普特南数学竞赛难题,甚至超越顶尖模型o4-mini! 字节发布全新复杂数学解决模型——Seed-Prover。
用扩散模型写代码,不仅像开了倍速,改起来还特别灵活! 字节Seed最新发布扩散语言模型Seed Diffusion Preview,这款模型主要聚焦于代码生成领域,它的特别之处在于采用了离散状态扩散技术,在推理速度上表现出色。
你有没有想要修复的老照片或者视频?
AI语音成大厂必争之地 打开字节、阿里们的多模态能力地图,每块宝藏都标着"语音”。
香港大学NLP团队联合字节跳动Seed、复旦大学发布名为Polaris的强化学习训练配方:通过Scaling RL,Polaris让4B模型的数学推理能力(AIME25上取得79.4,AIME24上取得81.2)超越了一众商业大模型,如Seed-1.5-thinking、Claude-4-Opus和o3-mini-high(25/01/31)。
《新智核》独家获悉,字节旗下Seed团队将招募多个机器人相关业务的一号位,包括机器人产品负责人、机器人工程技术负责人,以及具身智能大模型负责人。这一系列动作表明,Seed在机器人及具身智能领域加速布局的决心。
近年来,diffusion Transformers已经成为了现代视觉生成模型的主干网络。随着数据量和任务复杂度的进一步增加,diffusion Transformers的规模也在快速增长。然而在模型进一步扩大的过程中,如何调得较好的超参(如学习率)已经成为了一个巨大的问题,阻碍了大规模diffusion Transformers释放其全部的潜能。
根据申妈朋友圈,字节跳动发布了新一期廉政通报,披露了一起涉及 Seed 团队高层的严重违规事件。据报道,Seed 大语言模型负责人乔木与其团队所配属的一名 HRBP 在未履行申报流程的情况下,发展成为亲密关系。