SimKO:缓解RLVR训练中的概率过度集中,优化pass@K性能
SimKO:缓解RLVR训练中的概率过度集中,优化pass@K性能研究团队提出一种简洁且高效的算法 ——SimKO (Simple Pass@K Optimization),显著优化了 pass@K(K=1 及 K>1)性能。同时,团队认为当前的用熵(Entropy)作为指标衡量多样性存在局限:熵无法具体反映概率分布的形态。如图 2(c)所示,两个具有相同熵值的分布,一个可能包含多个峰值,而另一个则可能高度集中于一个峰值。
研究团队提出一种简洁且高效的算法 ——SimKO (Simple Pass@K Optimization),显著优化了 pass@K(K=1 及 K>1)性能。同时,团队认为当前的用熵(Entropy)作为指标衡量多样性存在局限:熵无法具体反映概率分布的形态。如图 2(c)所示,两个具有相同熵值的分布,一个可能包含多个峰值,而另一个则可能高度集中于一个峰值。
当强化学习(RL)成为大模型后训练的核心工具,「带可验证奖励的强化学习(RLVR)」凭借客观的二元反馈(如解题对错),迅速成为提升推理能力的主流范式。从数学解题到代码生成,RLVR 本应推动模型突破「已知答案采样」的局限,真正掌握深度推理逻辑 —— 但现实是,以 GRPO 为代表的主流方法正陷入「均值优化陷阱」。
大语言模型在RLVR训练中面临的“熵困境”,有解了!
结合RLHF+RLVR,8B小模型就能超越GPT-4o、媲美Claude-3.7-Sonnet。陈丹琦新作来了。他们提出了一个结合RLHF和RLVR优点的方法,RLMT(Reinforcement Learning with Model-rewarded Thinking,基于模型奖励思维的强化学习)。
一个月前,我们曾报道过清华姚班校友、普林斯顿教授陈丹琦似乎加入 Thinking Machines Lab 的消息。有些爆料认为她在休假一年后,会离开普林斯顿,全职加入 Thinking Machines Lab。
LRM通过简单却有效的RLVR范式,培养了强大的CoT推理能力,但伴随而来的冗长的输出内容,不仅显著增加推理开销,还会影响服务的吞吐量,这种消磨用户耐心的现象被称为“过度思考”问题。
近年来,AI大模型在数学计算、逻辑推理和代码生成领域的推理能力取得了显著突破。特别是DeepSeek-R1等先进模型的出现,可验证强化学习(RLVR)技术展现出强大的性能提升潜力。
在可验证强化学习(RLVR)的推动下,大语言模型在单轮推理任务中已展现出不俗表现。然而在真实推理场景中,LLM 往往需要结合外部工具进行多轮交互,现有 RL 算法在平衡模型的长程推理与多轮工具交互能力方面仍存在不足。
近年来, 大语言模型 (LLM) 在数学、编程等 "有标准答案" 的任务上取得了突破性进展, 这背后离不开 "可验证奖励" (Reinforcement Learning with Verifiable Rewards, RLVR) 技术的加持。RLVR 依赖于参考信号, 即通过客观标准答案来验证模型响应的可靠性。
新一代大型推理模型,如 OpenAI-o3、DeepSeek-R1 和 Kimi-1.5,在复杂推理方面取得了显著进展。该方向核心是一种名为 ZERO-RL 的训练方法,即采用可验证奖励强化学习(RLVR)逐步提升大模型在强推理场景 (math, coding) 的 pass@1 能力。