
重磅!淘天联合爱橙开源强化学习训练框架ROLL,高效支持十亿到千亿参数大模型训练
重磅!淘天联合爱橙开源强化学习训练框架ROLL,高效支持十亿到千亿参数大模型训练过去几年,随着基于人类偏好的强化学习(Reinforcement Learning from Human Feedback,RLHF)的兴起,强化学习(Reinforcement Learning,RL)已成为大语言模型(Large Language Model,LLM)后训练阶段的关键技术。
过去几年,随着基于人类偏好的强化学习(Reinforcement Learning from Human Feedback,RLHF)的兴起,强化学习(Reinforcement Learning,RL)已成为大语言模型(Large Language Model,LLM)后训练阶段的关键技术。
强化学习(RL)已经成为当今 LLM 不可或缺的技术之一。从大模型对齐到推理模型训练再到如今的智能体强化学习(Agentic RL),你几乎能在当今 AI 领域的每个领域看到强化学习的身影。
他不是天才,博士毕业0顶会论文,却靠着坚持写技术博客,因RLHF「网红」博客文章一炮而红,逆袭成功、跻身AI核心圈!技术可以迟到,但影响力不能缺席。这一次,是写作改变命运。
AI顶流Claude升级了,程序员看了都沉默:不仅能写代码能力更强了,还能连续干活7小时不出大差错!AGI真要来了?这背后到底发生了什么?现在,还有机会加入AI行业吗?如今做哪些准备,才能在未来立足?
惊艳全球的Claude 4,但它到底是如何思考?来自Anthropic两位研究员最新一期博客采访,透露了很多细节。这两天大家可以说是试玩了不少,有人仅用一个提示就搞定了个浏览器Agent,包括API和前端……直接一整个大震惊,与此同时关于Claude 4可能有意识并试图干坏事的事情同样被爆出。
近年来,大语言模型(LLMs)的对齐研究成为人工智能领域的核心挑战之一,而偏好数据集的质量直接决定了对齐的效果。无论是通过人类反馈的强化学习(RLHF),还是基于「RL-Free」的各类直接偏好优化方法(例如 DPO),都离不开高质量偏好数据集的构建。
训练狗时不仅要让它知对错,还要给予差异较大的、不同的奖励诱导,设计 RLHF 的奖励模型时也是一样。
回顾 AGI 的爆发,从最初的 pre-training (model/data) scaling,到 post-training (SFT/RLHF) scaling,再到 reasoning (RL) scaling,找到正确的 scaling 维度始终是问题的本质。
传统的偏好对⻬⽅法,如基于⼈类反馈的强化学习(RLHF)和直接偏好优化(DPO),依赖于训练过程中的模型参数更新,但在⾯对不断变化的数据和需求时,缺乏⾜够的灵活性来适应这些变化。
老婆饼里没有老婆,夫妻肺片里没有夫妻,RLHF 里也没有真正的 RL。在最近的一篇博客中,德克萨斯大学奥斯汀分校助理教授 Atlas Wang 分享了这样一个观点。