AI资讯新闻榜单内容搜索-RLHF

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: RLHF
什么样的偏好,才叫好的偏好?——揭秘偏好对齐数据的「三驾马车」

什么样的偏好,才叫好的偏好?——揭秘偏好对齐数据的「三驾马车」

什么样的偏好,才叫好的偏好?——揭秘偏好对齐数据的「三驾马车」

近年来,大语言模型(LLMs)的对齐研究成为人工智能领域的核心挑战之一,而偏好数据集的质量直接决定了对齐的效果。无论是通过人类反馈的强化学习(RLHF),还是基于「RL-Free」的各类直接偏好优化方法(例如 DPO),都离不开高质量偏好数据集的构建。

来自主题: AI技术研报
7616 点击    2025-04-15 14:29
上海AI Lab最新推出Mixture-of-Memories:线性注意力也有稀疏记忆了

上海AI Lab最新推出Mixture-of-Memories:线性注意力也有稀疏记忆了

上海AI Lab最新推出Mixture-of-Memories:线性注意力也有稀疏记忆了

回顾 AGI 的爆发,从最初的 pre-training (model/data) scaling,到 post-training (SFT/RLHF) scaling,再到 reasoning (RL) scaling,找到正确的 scaling 维度始终是问题的本质。

来自主题: AI技术研报
4617 点击    2025-03-06 09:46
推理时也能做偏好优化,无需额外重训练,来自上海AI Lab港中文等

推理时也能做偏好优化,无需额外重训练,来自上海AI Lab港中文等

推理时也能做偏好优化,无需额外重训练,来自上海AI Lab港中文等

传统的偏好对⻬⽅法,如基于⼈类反馈的强化学习(RLHF)和直接偏好优化(DPO),依赖于训练过程中的模型参数更新,但在⾯对不断变化的数据和需求时,缺乏⾜够的灵活性来适应这些变化。

来自主题: AI技术研报
7306 点击    2025-02-10 17:19
老婆饼里没有老婆,RLHF里也没有真正的RL

老婆饼里没有老婆,RLHF里也没有真正的RL

老婆饼里没有老婆,RLHF里也没有真正的RL

老婆饼里没有老婆,夫妻肺片里没有夫妻,RLHF 里也没有真正的 RL。在最近的一篇博客中,德克萨斯大学奥斯汀分校助理教授 Atlas Wang 分享了这样一个观点。

来自主题: AI资讯
7798 点击    2025-01-09 09:41
把RLHF带给VLA模型!通过偏好对齐来优化机器人策略,代码已开源

把RLHF带给VLA模型!通过偏好对齐来优化机器人策略,代码已开源

把RLHF带给VLA模型!通过偏好对齐来优化机器人策略,代码已开源

近年来,视觉-语言-动作模型(Vision-Language-Action, VLA)在诸多机器人任务上取得了显著的进展,但它们仍面临一些关键问题,例如由于仅依赖从成功的执行轨迹中进行行为克隆,导致对新任务的泛化能力较差。

来自主题: AI技术研报
7019 点击    2024-12-28 11:41
清华、智谱团队:探索 RLHF 的 scaling laws

清华、智谱团队:探索 RLHF 的 scaling laws

清华、智谱团队:探索 RLHF 的 scaling laws

目前关于 RLHF 的 scaling(扩展)潜力研究仍然相对缺乏,尤其是在模型大小、数据组成和推理预算等关键因素上的影响尚未被系统性探索。 针对这一问题,来自清华大学与智谱的研究团队对 RLHF 在 LLM 中的 scaling 性能进行了全面研究,并提出了优化策略。

来自主题: AI技术研报
9121 点击    2024-12-24 14:56
离职OpenAI后Lilian Weng博客首发!深扒RL训练漏洞,业内狂赞

离职OpenAI后Lilian Weng博客首发!深扒RL训练漏洞,业内狂赞

离职OpenAI后Lilian Weng博客首发!深扒RL训练漏洞,业内狂赞

Lilian Weng离职OpenAI后首篇博客发布!文章深入讨论了大模型强化学习中的奖励欺骗问题。随着语言模型在许多任务上的泛化能力不断提升,以及RLHF逐渐成为对齐训练的默认方法,奖励欺骗在语言模型的RL训练中已经成为一个关键的实践性难题。

来自主题: AI资讯
7520 点击    2024-12-06 09:54
翁荔离职OpenAI后第一个动作:万字长文探讨RLHF的漏洞,网友们抢着传看

翁荔离职OpenAI后第一个动作:万字长文探讨RLHF的漏洞,网友们抢着传看

翁荔离职OpenAI后第一个动作:万字长文探讨RLHF的漏洞,网友们抢着传看

之前领导OpenAI安全团队的北大校友翁荔(Lilian Weng),离职后第一个动作来了。当然是发~博~客。这次的博客一如既往万字干货,妥妥一篇研究综述,翁荔本人直言写起来不容易。主题围绕强化学习中奖励黑客(Reward Hacking)问题展开,即Agent利用奖励函数或环境中的漏洞来获取高奖励,而并未真正学习到预期行为。

来自主题: AI技术研报
7544 点击    2024-12-03 00:16