
轨迹跟踪误差直降50%,清华汪玉团队强化学习策略秘籍搞定无人机
轨迹跟踪误差直降50%,清华汪玉团队强化学习策略秘籍搞定无人机控制无人机执行敏捷、高机动性的行为是一项颇具挑战的任务。传统的控制方法,比如 PID 控制器和模型预测控制(MPC),在灵活性和效果上往往有所局限。而近年来,强化学习(RL)在机器人控制领域展现出了巨大的潜力。通过直接将观测映射为动作,强化学习能够减少对系统动力学模型的依赖。
控制无人机执行敏捷、高机动性的行为是一项颇具挑战的任务。传统的控制方法,比如 PID 控制器和模型预测控制(MPC),在灵活性和效果上往往有所局限。而近年来,强化学习(RL)在机器人控制领域展现出了巨大的潜力。通过直接将观测映射为动作,强化学习能够减少对系统动力学模型的依赖。
目前关于 RLHF 的 scaling(扩展)潜力研究仍然相对缺乏,尤其是在模型大小、数据组成和推理预算等关键因素上的影响尚未被系统性探索。 针对这一问题,来自清华大学与智谱的研究团队对 RLHF 在 LLM 中的 scaling 性能进行了全面研究,并提出了优化策略。
只需几十个样本即可训练专家模型,强化微调RLF能掀起强化学习热潮吗?具体技术实现尚不清楚,AI2此前开源的RLVR或许在技术思路上存在相似之处。
2024年的李飞飞是斯坦福大学的计算机科学教授,是斯坦福以人为本人工智能研究院(HAI)的院长,也是AI创业公司World Labs的创始人。
近期,新加坡国立大学计算机学院的邵林团队提出了 D(R,O) Grasp:一种面向跨智能体灵巧抓取的机器人与物体交互统一表示。该方法通过创新性地建模机器人手与物体在抓取姿态下的交互关系,成功实现了对多种机器人手型与物体几何形状的高度泛化能力,为灵巧抓取技术的未来开辟了全新的方向。
近段时间,世界模型的相关研究成果正如雨后春笋版不断涌现,光是我们报道过的就已有南大周志华团队的世界模型 Whale、Yann LeCun 团队的世界模型研究、李飞飞 World Labs 的空间智能研究、谷歌的强大世界模型 Genie 2 以及刚刚开源的像是能模拟万物的生成式物理引擎 Genesis。
传统搜索引擎主要基于关键词匹配,通过爬虫爬取网页上的内容并建立索引库,随后根据用户输入的关键词,搜索引擎根据相关性从索引库中返回一排结果展示给用户。
最近,2D/3D 内容创作、世界模型(World Models)似乎成为 AI 领域的热门关键词。作为计算机视觉的基础任务之一,多视角图像生成是上述热点方向的技术基础,在 3D 场景生成、虚拟现实、具身感知与仿真、自动驾驶等领域展现了广泛的应用潜力。
现如今,以 GPT 为代表的大语言模型正深刻影响人们的生产与生活,但在处理很多专业性和复杂程度较高的问题时仍然面临挑战。在诸如药物发现、自动驾驶等复杂场景中,AI 的自主决策能力是解决问题的关键,而如何进行决策大模型的高效训练目前仍然是开放性的难题。
遵循世界的 3D 特性,很多事就会变得自然而然。 说到斯坦福大学教授李飞飞(Fei-Fei Li),她提倡的「空间智能」最近正在引领 AI 发展方向。