
华为又开源了个大的:超大规模MoE推理秘籍
华为又开源了个大的:超大规模MoE推理秘籍超大规模MoE模型(如DeepSeek),到底该怎么推理才能做到又快又稳。现在,这个问题似乎已经有了标准答案——华为一个新项目,直接把推理超大规模MoE背后的架构、技术和代码,统统给开源了!
超大规模MoE模型(如DeepSeek),到底该怎么推理才能做到又快又稳。现在,这个问题似乎已经有了标准答案——华为一个新项目,直接把推理超大规模MoE背后的架构、技术和代码,统统给开源了!
刚刚,华为正式宣布开源盘古 70 亿参数的稠密模型、盘古 Pro MoE 720 亿参数的混合专家模型(参见机器之心报道:华为盘古首次露出,昇腾原生72B MoE架构,SuperCLUE千亿内模型并列国内第一 )和基于昇腾的模型推理技术。
6 月 27 日,腾讯混元宣布开源首个混合推理 MoE 模型 Hunyuan-A13B,总参数 80B,激活参数仅 13B,效果比肩同等架构领先开源模型,但是推理速度更快,性价比更高。模型已经在 Github 和 Huggingface 等开源社区上线,同时模型 API 也在腾讯云官网正式上线,支持快速接入部署。
最近,华为在MoE训练系统方面,给出了MoE训练算子和内存优化新方案:三大核心算子全面提速,系统吞吐再提20%,Selective R/S实现内存节省70%。
现在,请大家一起数一下“1”、“2”。OK,短短2秒钟时间,一个准万亿MoE大模型就已经吃透如何解一道高等数学大题了!而且啊,这个大模型还是不用GPU来训练,全流程都是大写的“国产”的那种。
来自上海人工智能实验室团队的最新成果 Linear-MoE,首次系统性地实现了线性序列建模与 MoE 的高效结合,并开源了完整的技术框架,包括 Modeling 和 Training 两大部分,并支持层间混合架构。为下一代基础模型架构的研发提供了有价值的工具和经验。
Pangu Ultra MoE 是一个全流程在昇腾 NPU 上训练的准万亿 MoE 模型,此前发布了英文技术报告[1]。最近华为盘古团队发布了 Pangu Ultra MoE 模型架构与训练方法的中文技术报告,进一步披露了这个模型的细节。
要问最近哪个模型最火,混合专家模型(MoE,Mixture of Experts)绝对是榜上提名的那一个。
部署超大规模MoE这件事,国产芯片的推理性能,已经再创新高了—— 不仅是“英伟达含量为0”这么简单,更是性能全面超越英伟达Hopper架构!
Mixture-of-Experts(MoE)在推理时仅激活每个 token 所需的一小部分专家,凭借其稀疏激活的特点,已成为当前 LLM 中的主流架构。然而,MoE 虽然显著降低了推理时的计算量,但整体参数规模依然大于同等性能的 Dense 模型,因此在显存资源极为受限的端侧部署场景中,仍然面临较大挑战。