
COLM 24 | 从正确中学习?大模型的自我纠正新视角
COLM 24 | 从正确中学习?大模型的自我纠正新视角大型语言模型(LLMs)虽然进展很快,很强大,但是它们仍然存在会产生幻觉、生成有害内容和不遵守人类指令等问题。一种流行的解决方案就是基于【自我纠正】,大概就是看自己输出的结果,自己反思一下有没有错,如果有错就自己改正。目前自己纠正还是比较关注于让大模型从错误中进行学习。
大型语言模型(LLMs)虽然进展很快,很强大,但是它们仍然存在会产生幻觉、生成有害内容和不遵守人类指令等问题。一种流行的解决方案就是基于【自我纠正】,大概就是看自己输出的结果,自己反思一下有没有错,如果有错就自己改正。目前自己纠正还是比较关注于让大模型从错误中进行学习。
上下文学习(In-Context Learning, ICL)是指LLMs能够仅通过提示中给出的少量样例,就迅速掌握并执行新任务的能力。这种“超能力”让LLMs表现得像是一个"万能学习者",能够在各种场景下快速适应并产生高质量输出。然而,关于ICL的内部机制,学界一直存在争议。
SFT、RLHF 和 DPO 都是先估计 LLMs 本身的偏好,再与人类的偏好进行对齐
输出格式不同,竟然还能影响大模型发挥?!
长文本处理能力对LLM的重要性是显而易见的。在2023年初,即便是当时最先进的GPT-3.5,其上下文长度也仅限于2k,然而今日,128k的上下文长度已经成为衡量模型技术先进性的重要标志之一。那你知道LLMs的长文本阅读能力如何评估吗?
T-MAC是一种创新的基于查找表(LUT)的方法,专为在CPU上高效执行低比特大型语言模型(LLMs)推理而设计,无需权重反量化,支持混合精度矩阵乘法(mpGEMM),显著降低了推理开销并提升了计算速度。
代码生成和补全任务做不完了?!
在过去的几年中,大型语言模型(Large Language Models, LLMs)在自然语言处理(NLP)领域取得了突破性的进展。这些模型不仅能够理解复杂的语境,还能够生成连贯且逻辑严谨的文本。
数以亿计的人体验过ChatGPT,但许多人尝试过后便未再回头。每家大型企业也都曾尝试过相关试点项目,但真正投入应用的却寥寥无几。这其中部分原因可能只是时间问题。然而,大型语言模型(LLMs)可能也存在陷阱:它们看似是产品,给人以神奇之感,但实际上并非如此。或许,我们终究需要经历寻找产品与市场契合点的漫长而单调的探索过程。
地球是平的吗? 当然不是。自古希腊数学家毕达哥拉斯首次提出地圆说以来,现代科学技术已经证明了地球是圆形这一事实。 但是,你有没有想过,如果 AI 被误导性信息 “忽悠” 了,会发生什么? 来自清华、上海交大、斯坦福和南洋理工的研究人员在最新的论文中深入探索 LLMs 在虚假信息干扰情况下的表现,他们发现大语言模型在误导信息反复劝说下,非常自信地做出「地球是平的」这一判断。