探索跳跃式思维链:DeepSeek创造力垫底,Qwen系列接近人类顶尖水平
探索跳跃式思维链:DeepSeek创造力垫底,Qwen系列接近人类顶尖水平在大语言模型 (LLM) 的研究中,与以 Chain-of-Thought 为代表的逻辑思维能力相比,LLM 中同等重要的 Leap-of-Thought 能力,也称为创造力,目前的讨论和分析仍然较少。这可能会严重阻碍 LLM 在创造力上的发展。造成这种困局的一个主要原因是,面对「创造力」,我们很难构建一个合适且自动化的评估流程。
在大语言模型 (LLM) 的研究中,与以 Chain-of-Thought 为代表的逻辑思维能力相比,LLM 中同等重要的 Leap-of-Thought 能力,也称为创造力,目前的讨论和分析仍然较少。这可能会严重阻碍 LLM 在创造力上的发展。造成这种困局的一个主要原因是,面对「创造力」,我们很难构建一个合适且自动化的评估流程。
OpenAI o1和DeepSeek-R1靠链式思维(Chain-of-Thought, CoT)展示了超强的推理能力,但这一能力能多大程度地帮助视觉推理,又应该如何细粒度地评估视觉推理呢?
大语言模型(LLM)在自然语言处理领域取得了巨大突破,但在复杂推理任务上仍面临着显著挑战。现有的Chain-of-Thought(CoT)和Tree-of-Thought(ToT)等方法虽然通过分解问题或结构化提示来增强推理能力,但它们通常只进行单次推理过程,无法修正错误的推理路径,这严重限制了推理的准确性。
大语言模型(LLMs)在推理任务上展现出了令人瞩目的能力,但其推理思维方式的单一性一直是制约性能提升的关键瓶颈。目前的研究主要关注如何通过思维链(Chain-of-Thought)等方法来提升推理的质量,却忽视了一个重要维度——推理类型的多样性。
想要达成通用人工智能 AGI 的终极目标,首先要达成的是模型要能完成人类所能轻松做到的任务。为了做到这一点,大模型开发的关键指导之一便是如何让机器像人类一样思考和推理。诸如注意力机制和思维链(Chain-of-Thought)等技术正是由此产生的灵感。
近年来,大语言模型(LLMs)由于其通用的问题处理能力而引起了大量的关注。现有研究表明,适当的提示设计(prompt enginerring),例如思维链(Chain-of-Thoughts),可以解锁 LLM 在不同领域的强大能力。