让你的Mac用上DeepSeek-OCR:一个从0到1的开源适配之旅
让你的Mac用上DeepSeek-OCR:一个从0到1的开源适配之旅DeepSeek-OCR这段时间非常火,但官方开源的文件是“按 NVIDIA/CUDA 习惯写的 Linux 版推理脚本+模型权重”,而不是“跨设备跨后端”的通吃实现,因此无法直接在苹果设备上运行,对于Mac用户来说,在许多新模型诞生的第一时间,往往只能望“模”兴叹。
DeepSeek-OCR这段时间非常火,但官方开源的文件是“按 NVIDIA/CUDA 习惯写的 Linux 版推理脚本+模型权重”,而不是“跨设备跨后端”的通吃实现,因此无法直接在苹果设备上运行,对于Mac用户来说,在许多新模型诞生的第一时间,往往只能望“模”兴叹。
近期,DeepSeek-OCR提出了“Vision as Context Compression”的新思路,然而它主要研究的是通过模型的OCR能力,用图片压缩文档。
近日,来自普渡大学、德克萨斯大学、新加坡国立大学、摩根士丹利机器学习研究、小红书 hi-lab 的研究者联合提出了一种对离散扩散大语言模型的后训练方法 —— Discrete Diffusion Divergence Instruct (DiDi-Instruct)。经过 DiDi-Instruct 后训练的扩散大语言模型可以以 60 倍的加速超越传统的 GPT 模型和扩散大语言模型。
几个月前,和 OpenAI“星际之门”(Stargate)项目的合作,让 Crusoe 这家公司一夜成名。据创始人介绍,公司的名字灵感来源于小说《鲁滨逊漂流记》(Robinson Crusoe),正像鲁滨逊在荒岛上竭力利用全部资源来生存一样,这家公司也试图最大化利用废弃或闲置能源,并通过算力来释放其价值。
dots.ocr 支持多语言文档的解析,能够在单一模型中统一完成版面检测、文本识别、表格解析、公式提取等任务,并保持良好的阅读顺序。他们之所以在一个模型中完成这些任务,是因为他们相信这些任务之间可以相互促进,为彼此提供更多的 context,从而达到更高的性能上限。目前,该项目的 star 量已经超过了 5000。
阿里巴巴与上海交通大学 EPIC Lab 联合提出 Socratic-Zero,一个完全无外部数据依赖的自主推理训练框架。该方法仅从 100 个种子问题出发,通过三个智能体的协同进化,自动生成高质量、难度自适应的课程,并持续提升模型推理能力。
在最近一篇来自Meta FAIR团队的论文里,研究者找到了一种前所未有的方式——他们能实时看到AI的思考过程。这项名为CRV的方法,通过替换模型内部的MLP模块,让每一步推理都变得「可见」。这不是隐喻,而是可量化的现象。Meta用它让错误检测精度提升到92.47%,也让人类第一次得以窥见AI是怎么想错的。
TechCrunch 报道,之前一直以 AI 语音初创公司示人的 Sesame,完成了 2.5 亿美元的 B 轮融资,投资方包括红杉资本、Spark Capital 及其他未公开的投资者。随后,Sesame 创始人 Brendan Iribe 也在个人社媒账号上发帖,证实该消息。
整个Hugging Face的趋势版里,前4有3个OCR,甚至Qwen3-VL-8B也能干OCR的活,说一句全员OCR真的不过分。然后在我上一篇讲DeepSeek-OCR文章的评论区里,有很多朋友都在把DeepSeek-OCR跟PaddleOCR-VL做对比,也有很多人都在问,能不能再解读一下百度那个OCR模型(也就是PaddleOCR-VL)。
太卷了,DeepSeek-OCR刚发布不到一天,智谱就开源了自家的视觉Token方案——Glyph。既然是同台对垒,那自然得请这两天疯狂点赞DeepSeek的卡帕西来鉴赏一下: