
意识智能体:大模型的下一个进化方向?
意识智能体:大模型的下一个进化方向?机器具备意识吗?本文对AI意识(AI consciousness)进行了考察,特别是深入探讨了大语言模型作为高级计算模型实例是否具备意识,以及AI意识的必要和充分条件。
机器具备意识吗?本文对AI意识(AI consciousness)进行了考察,特别是深入探讨了大语言模型作为高级计算模型实例是否具备意识,以及AI意识的必要和充分条件。
苦等多年,Excel终于长大了!全新COPILOT函数神器,直接把AI塞进了表格,不论是整理数据、头脑风暴,还是分类反馈,通通一键搞定,打工人效率直接原地起飞。
一群机械臂手忙脚乱地自己干活,彼此配合、互不碰撞。
在现代科学中,几乎所有领域都依赖软件来进行计算实验。但开发这些专用的科学软件是一个非常缓慢、乏味且困难的过程,开发和测试一个新想法(一次“试错”)需要编写复杂的软件,这个过程可能耗费数周、数月甚至数年。
人类一眼就能看懂的文字,AI居然全军覆没。
在当前由大语言模型(LLM)驱动的技术范式中,检索增强生成(RAG)已成为提升模型知识能力与缓解「幻觉」的核心技术。然而,现有 RAG 系统在面对需多步逻辑推理任务时仍存在显著局限,具体挑战如下:
Meta超级智能实验室的首篇论文,来了—— 提出了一个名为REFRAG的高效解码框架,重新定义了RAG(检索增强生成),最高可将首字生成延迟(TTFT)加速30倍。
自从 Claude code 上线 sub-agents 后,我一直对其抱很大的期待,每次做 case 都会搭建一支“AI coding 梦之队”。想象中,它们会在主 agent的协调下火力全开, 完成我超级复杂的需求。
过去几年,大语言模型(LLM)的训练大多依赖于基于人类或数据偏好的强化学习(Preference-based Reinforcement Fine-tuning, PBRFT):输入提示、输出文本、获得一个偏好分数。这一范式催生了 GPT-4、Llama-3 等成功的早期大模型,但局限也日益明显:缺乏长期规划、环境交互与持续学习能力。
SpikingBrain借鉴大脑信息处理机制,具有线性/近线性复杂度,在超长序列上具有显著速度优势,在GPU上1M长度下TTFT 速度相比主流大模型提升26.5x, 4M长度下保守估计速度提升超过100x;
在大型语言模型(LLM)进行数学题、逻辑推理等复杂任务时,一个非常流行且有效的方法叫做 “自洽性”(Self-Consistency),通常也被称为“平行思考”。
继π0后,具身智能基座模型在中国也终于迎来了真正的开源—— 刚刚,WALL-OSS宣布正式开源!在多项指标中,它还超越了π0。如果你是搞具身的开发者,了解它的基本资料,你就一定不会想错过它:
经历了前段时间的鸡飞狗跳,扎克伯格的投资似乎终于初见成效。
自2014 年提出以来,Adam 及其改进版 AdamW 长期占据开放权重语言模型预训练的主导地位,帮助模型在海量数据下保持稳定并实现较快收敛。
在多模态大模型的基座上,视觉 - 语言 - 动作(Visual-Language-Action, VLA)模型使用大量机器人操作数据进行预训练,有望实现通用的具身操作能力。
香港科技大学谭平教授团队与地平线(Horizon Robotics)团队最新发布了一项 3D 场景表征与大规模重建新方法 SAIL-Recon,通过锚点图建立构建场景全局隐式表征,突破现有 VGGT 基础模型对于大规模视觉定位与 3D 重建的处理能力瓶颈,实现万帧级的场景表征抽取与定位重建,将空间智能「3D 表征与建模」前沿推向一个新的高度。
开放词汇识别与分类对于全面理解现实世界的 3D 场景至关重要。目前,所有现有方法在训练或推理过程中都依赖于 2D 或文本模态。这凸显出缺乏能够单独处理 3D 数据以进行端到端语义学习的模型,以及训练此类模型所需的数据。与此同时,3DGS 已成为各种视觉任务中 3D 场景表达的重要标准之一。
让大模型破译从未见过的甲骨文,准确率拿下新SOTA!
OpenAI重磅结构调整:ChatGPT「模型行为」团队并入Post-Training,前负责人Joanne Jang负责新成立的OAI Labs。而背后原因,可能是他们最近的新发现:评测在奖励模型「幻觉」,模型被逼成「应试选手」。一次组织重组+评测范式重构,也许正在改写AI的能力边界与产品形态。
为了降低大模型预训练成本,最近两年,出现了很多新的优化器,声称能相比较AdamW,将预训练加速1.4×到2×。但斯坦福的一项研究,指出不仅新优化器的加速低于宣称值,而且会随模型规模的增大而减弱,该研究证实了严格基准评测的必要性。
机器人终于不用散装大脑了! 字节Seed一个模型就能搞定机器人推理、任务规划和自然语言交互。
清华大学最新提出的建筑专业知识驱动的平面图自动生成方案FloorPlan-LLaMa,解决传统模型「指标优秀但实际不可用」 痛点,让AI生成贴合建筑师设计偏好的可行方案。
在游戏、影视制作、虚拟人和交互式内容创作等行业中,高质量的 3D 动画是实现真实感与表现力的基础。然而,传统计算机图形学中的动画制作通常依赖于骨骼绑定与关键帧编辑,这一流程虽然能够带来高质量与精细控制,但需要经验丰富的艺术家投入大量人力与时间,代价昂贵。
模型训练重点在于数据的数量与质量?其实还有一个关键因素—— 数据的出场顺序。
AI 最臭名昭著的 Bug 是什么?不是代码崩溃,而是「幻觉」—— 模型自信地编造事实,让你真假难辨。这个根本性挑战,是阻碍我们完全信任 AI 的关键障碍。
能看懂视频并进行跨模态推理的大模型Keye-VL 1.5,快手开源了。
在端侧 AI 这个热门赛道,华为盘古大模型扔下了一颗 “重磅炸弹” 。
想象一个虚拟人,他不仅能精准地对上你的口型,还能在你讲到关键点时做出恍然大悟的表情,在你讲述悲伤故事时流露出同情的神态,甚至能根据你的话语逻辑做出有意义的手势。
近年来,生成式 AI 和多模态大模型在各领域取得了令人瞩目的进展。然而,在现实世界应用中,动态环境下的数据分布和任务需求不断变化,大模型如何在此背景下实现持续学习成为了重要挑战
VMem用基于3D几何的记忆索引替代「只看最近几帧」的短窗上下文:检索到的参考视角刚好看过你现在要渲染的表面区域;让模型在小上下文里也能保持长时一致性;实测4.2s/帧,比常规21帧上下文的管线快~12倍。