AI资讯新闻榜单内容搜索-预训练

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 预训练
Ilya罕见发声:大模型「大力出奇迹」到头了

Ilya罕见发声:大模型「大力出奇迹」到头了

Ilya罕见发声:大模型「大力出奇迹」到头了

AI正从「规模时代」,重新走向「科研时代」。这是Ilya大神在最新采访中发表的观点。这一次,Ilya一顿输出近2万字,信息量爆炸,几乎把当下最热门的AI话题都聊了个遍:Ilya认为,目前主流的「预训练 + Scaling」路线已经明显遇到瓶颈。与其盲目上大规模,不如把注意力放回到「研究范式本身」的重构上。

来自主题: AI资讯
7091 点击    2025-11-26 14:38
NeurIPS 2025 Spotlight | 香港大学提出无需数据标记的ViT密集表征增强方法

NeurIPS 2025 Spotlight | 香港大学提出无需数据标记的ViT密集表征增强方法

NeurIPS 2025 Spotlight | 香港大学提出无需数据标记的ViT密集表征增强方法

在视觉处理任务中,Vision Transformers(ViTs)已发展成为主流架构。然而,近期研究表明,ViT 模型的密集特征中会出现部分与局部语义不一致的伪影(artifact),进而削弱模型在精细定位类任务中的性能表现。因此,如何在不耗费大量计算资源的前提下,保留 ViT 模型预训练核心信息并消除密集特征中的伪影?

来自主题: AI技术研报
7598 点击    2025-11-20 09:33
ConsistEdit来了:无需训练,实现高精度、高一致性的视觉编辑新范式

ConsistEdit来了:无需训练,实现高精度、高一致性的视觉编辑新范式

ConsistEdit来了:无需训练,实现高精度、高一致性的视觉编辑新范式

无需额外训练即可适配预训练生成模型的编辑方法,凭借灵活、高效的特性,已成为视觉生成领域的研究热点。这类方法通过操控 Attention 机制(如 Prompt-to-Prompt、MasaCtrl)实现文本引导编辑,但当前技术存在两大核心痛点,严重限制其在复杂场景的应用

来自主题: AI技术研报
9616 点击    2025-11-19 15:19
RAE+VAE? 预训练表征助力扩散模型Tokenizer,加速像素压缩到语义提取

RAE+VAE? 预训练表征助力扩散模型Tokenizer,加速像素压缩到语义提取

RAE+VAE? 预训练表征助力扩散模型Tokenizer,加速像素压缩到语义提取

近期,RAE(Diffusion Transformers with Representation Autoencoders)提出以「 冻结的预训练视觉表征」直接作为潜空间,以显著提升扩散模型的生成性能。

来自主题: AI技术研报
10502 点击    2025-11-14 10:21
自回归科学基座模型 BigBang-Proton,提出实现 AGI 的新路线

自回归科学基座模型 BigBang-Proton,提出实现 AGI 的新路线

自回归科学基座模型 BigBang-Proton,提出实现 AGI 的新路线

近日,专注于研发物质世界基座模型的公司超越对称(上海)技术有限公司(超对称)发布了新版基座模型 BigBang-Proton,成功实现多个真实世界的专业学科问题与 LLM 的统一预训练和推理,挑战了 Sam Altman 和主流的 AGI 技术路线。

来自主题: AI技术研报
8510 点击    2025-11-07 15:03
具身智能一步踏入Scaling Law!10B+基础模型,27万小时真实数据

具身智能一步踏入Scaling Law!10B+基础模型,27万小时真实数据

具身智能一步踏入Scaling Law!10B+基础模型,27万小时真实数据

当前机器人领域,基础模型主要基于「视觉-语言预训练」,这样可将现有大型多模态模型的语义泛化优势迁移过来。但是,机器人的智能确实能随着算力和数据的增加而持续提升吗?我们能预测这种提升吗?

来自主题: AI技术研报
6445 点击    2025-11-05 16:42
字节Seed团队发布循环语言模型Ouro,在预训练阶段直接「思考」,Bengio组参与

字节Seed团队发布循环语言模型Ouro,在预训练阶段直接「思考」,Bengio组参与

字节Seed团队发布循环语言模型Ouro,在预训练阶段直接「思考」,Bengio组参与

现代 LLM 通常依赖显式的文本生成过程(例如「思维链」)来进行「思考」训练。这种策略将推理任务推迟到训练后的阶段,未能充分挖掘预训练数据中的潜力。

来自主题: AI技术研报
8883 点击    2025-11-04 16:12
字节发布通用游戏智能体!5000亿token训练,用鼠标键盘吊打GPT-5!

字节发布通用游戏智能体!5000亿token训练,用鼠标键盘吊打GPT-5!

字节发布通用游戏智能体!5000亿token训练,用鼠标键盘吊打GPT-5!

Game-TARS基于统一、可扩展的键盘—鼠标动作空间训练,可在操作系统、网页与模拟环境中进行大规模预训练。依托超5000亿标注量级的多模态训练数据,结合稀疏推理(Sparse-Thinking) 与衰减持续损失(decaying continual loss),大幅提升了智能体的可扩展性和泛化性。

来自主题: AI技术研报
7872 点击    2025-11-01 09:42
高效训练新标杆!华人团队开源原生VLM-NEO,以少数据追平顶级模型

高效训练新标杆!华人团队开源原生VLM-NEO,以少数据追平顶级模型

高效训练新标杆!华人团队开源原生VLM-NEO,以少数据追平顶级模型

当下主流的视觉语言模型(Vision-Language Models, VLM),通常都采用这样一种设计思路:将预训练的视觉编码器与大语言模型通过投影层拼接起来。这种模块化架构成就了当前 VLM 的辉煌,但也带来了一系列新的问题——多阶段训练复杂、组件间语义对齐成本高,不同模块的扩展规律难以协调。

来自主题: AI技术研报
7400 点击    2025-10-30 10:55