
阿里智能体多轮推理超越GPT-4o,开源模型也能做Deep Research
阿里智能体多轮推理超越GPT-4o,开源模型也能做Deep Research能够完成多步信息检索任务,涵盖多轮推理与连续动作执行的智能体来了。通义实验室推出WebWalker(ACL2025)续作自主信息检索智能体WebDancer。
能够完成多步信息检索任务,涵盖多轮推理与连续动作执行的智能体来了。通义实验室推出WebWalker(ACL2025)续作自主信息检索智能体WebDancer。
在数字化时代,视觉信息在知识传递和决策支持中的重要性日益凸显。然而,传统的检索增强型生成(RAG)方法在处理视觉丰富信息时面临着诸多挑战。一方面,传统的基于文本的方法无法处理视觉相关数据;另一方面,现有的视觉 RAG 方法受限于定义的固定流程,难以有效激活模型的推理能力。
腾讯的CodeBuddy、字节的Trea、现在阿里的通义灵码,中国互联网的三大巨头在AI编程领域集结完毕,明显就是要从老美的Cursor手中抢回中国客户。
为提升大模型“推理+搜索”能力,阿里通义实验室出手了。
信息检索能力对提升大语言模型 (LLMs) 的推理表现至关重要,近期研究尝试引入强化学习 (RL) 框架激活 LLMs 主动搜集信息的能力,但现有方法在训练过程中面临两大核心挑战:
既能提升模型能力,又不显著增加内存和时间成本,LLM第三种Scaling Law被提出了。
上下文长度达 13 万 token,适用于多段文档综合分析、金融、法律、科研等复杂领域任务。
每次更换语言模型就要重新优化提示词?资源浪费且效率低下!本文介绍MetaSPO框架,首个专注模型迁移系统提示优化的元学习方法,让一次优化的提示可跨模型通用。我在儿童教育场景的实验验证了效果:框架自动生成了五种不同教育范式的系统提示,最优的"苏格拉底式"提示成功由DeepSeek-V3迁移到通义千问模型,评分从0.3920提升至0.4362。
强化学习(RL)+真实搜索引擎,可以有效提升大模型检索-推理能力。
此次开源的 Wan2.1-VACE-1.3B 支持 480P 分辨率,Wan2.1-VACE-14B 支持 480P 和 720P 分辨率。通过 VACE,用户可一站式完成文生视频、图像参考生成、局部编辑与视频扩展等多种任务,无需频繁切换模型或工具,真正实现高效、灵活的视频创作体验。