
零开销,消除图像幻觉!基于零空间投影挖掘正常样本特征 | CVPR 2025
零开销,消除图像幻觉!基于零空间投影挖掘正常样本特征 | CVPR 2025当前大型视觉语言模型(LVLMs)存在物体幻觉问题,即会生成图像中不存在的物体描述。
当前大型视觉语言模型(LVLMs)存在物体幻觉问题,即会生成图像中不存在的物体描述。
最近,扩散语言模型(dLLM)有点火。现在,苹果也加入这片新兴的战场了。
还在为复杂的Windows设置头疼?微软来重新定义设置界面交互了
过去几年,随着基于人类偏好的强化学习(Reinforcement Learning from Human Feedback,RLHF)的兴起,强化学习(Reinforcement Learning,RL)已成为大语言模型(Large Language Model,LLM)后训练阶段的关键技术。
在大语言模型(LLM)加速进入法律、医疗、金融等高风险应用场景的当下,“安全对齐”不再只是一个选项,而是每一位模型开发者与AI落地者都必须正面应对的挑战。
最近,来自NUS、UT Austin等机构的研究人员创新性地提出了一种「拖拽式大语言模型」(DnD),它可以基于提示词快速生成模型参数,无需微调就能适应任务。不仅效率最高提升12000倍,而且具备出色的零样本泛化能力。
根据申妈朋友圈,字节跳动发布了新一期廉政通报,披露了一起涉及 Seed 团队高层的严重违规事件。据报道,Seed 大语言模型负责人乔木与其团队所配属的一名 HRBP 在未履行申报流程的情况下,发展成为亲密关系。
斯坦福大学 2025 年春季的 CS336 课程「从头开始创造语言模型(Language Models from Scratch)」相关课程和材料现已在网上全面发布!
大语言模型(LLM)能力提升引发对潜在风险的担忧,洞察其内部“思维过程”、识别危险信号成AI安全核心挑战。
大语言模型在数学证明中常出现推理漏洞,如跳步或依赖特殊值。斯坦福等高校团队提出IneqMath基准,将不等式证明拆解为可验证的子任务。结果显示,模型的推理正确率远低于答案正确率,暴露出其在数学推理上的缺陷。