
Nature封面:AI训练AI,越训越离谱
Nature封面:AI训练AI,越训越离谱训练数据是用 GPT-4o 生成的?那质量不好说了。
训练数据是用 GPT-4o 生成的?那质量不好说了。
近日,《连线》杂志联合ProofNews联合发表一篇调查文章,指责苹果、Anthropic等科技巨头未经许可使用YouTube视频训练AI模型。但训练数据的使用边界究竟在哪里?创作者、大公司和开发者正在陷入知识产权的罗生门……
生成式模型原本被设计来模仿人类的各种复杂行为,但人们普遍认为它们最多只能达到与其训练数据中的专家相当的水平。不过,最新的研究突破了这一限制,表明在特定领域,如国际象棋,通过采用低温采样技术,这些模型能够超越它们所学习的那些专家,展现出更高的能力。
在当今的多模态大模型的发展中,模型的性能和训练数据的质量关系十分紧密,可以说是 “数据赋予了模型的绝大多数能力”。
训练数据的数量和质量,对LLM性能的重要性已经是不言自明的事实。然而,Epoch AI近期的一篇论文却给正在疯狂扩展的AI模型们泼了冷水,他们预测,互联网上可用的人类文本数据将在四年后,即2028年耗尽。
从大规模网络爬取、精细过滤到去重技术,通过FineWeb的技术报告探索如何打造高质量数据集,为大型语言模型(LLM)预训练提供更优质的性能。
抄袭框架和预训练数据的情况,是更狭义的套壳。
就算是 OpenAI 在舆论场也无法逃过版权保护的呼声。
众所周知,对于 Llama3、GPT-4 或 Mixtral 等高性能大语言模型来说,构建高质量的网络规模数据集是非常重要的。然而,即使是最先进的开源 LLM 的预训练数据集也不公开,人们对其创建过程知之甚少。
GPT-4在为人类选股时,表现竟然超越了大部分人类分析师,和针对金融训练的专业模型?在没有任何上下文的情况下,它们直接就成功分析了财务报表,这一发现让许多业内大咖震惊了。然而好景不长,有AI大牛指出研究中的bug:之所以会这样,很可能是训练数据被污染了。