
刚刚,豆包1.5模型家族硬核登场!「深度思考」秘笈曝光,多模态冲爆榜单
刚刚,豆包1.5模型家族硬核登场!「深度思考」秘笈曝光,多模态冲爆榜单刚刚发布的豆包大模型1.5,不仅多模态能力全面提升,霸榜多个基准;更难得的是,它在训练过程中从未使用过任何其他模型生成的数据,坚决不走蒸馏「捷径」。
刚刚发布的豆包大模型1.5,不仅多模态能力全面提升,霸榜多个基准;更难得的是,它在训练过程中从未使用过任何其他模型生成的数据,坚决不走蒸馏「捷径」。
模型蒸馏也有「度」,过度蒸馏,只会导致模型性能下降。最近,来自中科院、北大等多家机构提出全新框架,从两个关键要素去评估和量化蒸馏模型的影响。结果发现,除了豆包、Claude、Gemini之外,大部分开/闭源LLM蒸馏程度过高。
昨天晚上,DeepSeek 又开源了 DeepSeek-R1 模型(后简称 R1),再次炸翻了中美互联网: R1 遵循 MIT License,允许用户通过蒸馏技术借助 R1 训练其他模型。 R1 上线 API,对用户开放思维链输出 R1 在数学、代码、自然语言推理等任务上,性能比肩 OpenAI o1 正式版,小模型则超越 OpenAI o1-mini
最近几个月,从各路媒体、AI 社区到广大网民都在关注 OpenAI 下一代大模型「GPT-5」的进展。
大连理工大学的研究人员提出了一种基于Wasserstein距离的知识蒸馏方法,克服了传统KL散度在Logit和Feature知识迁移中的局限性,在图像分类和目标检测任务上表现更好。
最新综述论文探讨了知识蒸馏在持续学习中的应用,重点研究如何通过模仿旧模型的输出来减缓灾难性遗忘问题。通过在多个数据集上的实验,验证了知识蒸馏在巩固记忆方面的有效性,并指出结合数据回放和使用separated softmax损失函数可进一步提升其效果。
1/10训练数据激发高级推理能力!近日,来自清华的研究者提出了PRIME,通过隐式奖励来进行过程强化,提高了语言模型的推理能力,超越了SFT以及蒸馏等方法。
用大模型“蒸馏”小模型,有新招了!
近年来,文本到图像扩散模型为图像合成树立了新标准,现在模型可根据文本提示生成高质量、多样化的图像。然而,尽管这些模型从文本生成图像的效果令人印象深刻,但它们往往无法提供精确的控制、可编辑性和一致性 —— 而这些特性对于实际应用至关重要。
代码模型可以自己进化,利用自身生成的数据来进行指令调优,效果超越GPT-4o直接蒸馏!