英伟达成美国大模型开源标杆:Nemotron 3连训练配方都公开,10万亿token数据全放出
英伟达成美国大模型开源标杆:Nemotron 3连训练配方都公开,10万亿token数据全放出英伟达在开源模型上玩的很激进: “最高效的开放模型家族”Nemotron 3,混合Mamba-Transformer MoE架构、NVFP4低精度训练全用上。而且开放得很彻底:
英伟达在开源模型上玩的很激进: “最高效的开放模型家族”Nemotron 3,混合Mamba-Transformer MoE架构、NVFP4低精度训练全用上。而且开放得很彻底:
英伟达让AI仅靠「看直播」就学会了通用游戏操作。虚拟世界已成为物理智能的黑客帝国,看4万小时直播学会几乎所有游戏!
和传统的游戏自动化脚本不同,这是一个完整的通用的大模型,不仅限于单一游戏的操作,能够玩遍市面上几乎全部的游戏类型。于是,让我们正式介绍主角,来自英伟达的最新开源基础模型 NitroGen。该模型的训练目标是玩 1000 款以上的游戏 —— 无论是 RPG、平台跳跃、吃鸡、竞速,还是 2D、3D 游戏,统统不在话下!
几个小时前,NVIDIA CUDA Toolkit 13.1 正式发布,英伟达官方表示:「这是 20 年来最大的一次更新。」CUDA Tile 是 NVIDIA CUDA Toolkit 13.1 最核心的更新。它是一种基于 tile 的编程模型,能够以更高的层次编写算法,并抽象化专用硬件(例如张量核心)的细节。
导读 过去两年,小语言模型(SLM)在业界备受关注:参数更少、结构更轻,理应在真实部署中 “更快”。但只要真正把它们跑在 GPU 上,结论往往令人意外 —— 小模型其实没有想象中那么快。
OmniVinci是英伟达推出的全模态大模型,能精准解析视频和音频,尤其擅长视觉和听觉信号的时序对齐。它以90亿参数规模,性能超越同级别甚至更高级别模型,训练数据效率是对手的6倍,大幅降低成本。在视频内容理解、语音转录、机器人导航等场景中,OmniVinci能提供高效支持,展现出卓越的多模态应用能力。
英伟达不光自己成长高速,现在它在AI领域的投资也坐上火箭了。 最新数据显示,2025年过去的三个季度里,英伟达参与了50笔AI相关风险投资,这个数量已经超过了2024年全年的48笔。
AI模型是现在,Physical AI是未来
英伟达面向个人的AI超算DGX Spark已上市!128GB统一内存(常规系统内存+GPU显存),加上允许将两台DGX Spark连起来,直接可以跑起来405B的大模型(FP4精度),而这已经逼近目前开源的最大模型!如此恐怖的实力却格外安静优雅,大小与Mac mini相仿,3999美元带回家!
老黄看好机器人,还真不是嘴上说说! 这不,就在正在举办的SIGGRAPH(计算机图形学)大会上,英伟达为机器人带来了全新升级的Cosmos世界模型。