清华新框架让大模型学会「精读略读」!实现12倍端到端加速,基准评分翻倍
清华新框架让大模型学会「精读略读」!实现12倍端到端加速,基准评分翻倍来自清华大学、鹏城实验室与阿里巴巴未来生活实验室的联合研究团队发现:现有任务相关的压缩方法不仅陷入效率瓶颈——要么一次性加载全文(效率低),要么自回归逐步压缩(速度慢),更难以兼顾“保留关键信息”与“保持自然语言可解释性”。
来自清华大学、鹏城实验室与阿里巴巴未来生活实验室的联合研究团队发现:现有任务相关的压缩方法不仅陷入效率瓶颈——要么一次性加载全文(效率低),要么自回归逐步压缩(速度慢),更难以兼顾“保留关键信息”与“保持自然语言可解释性”。
过去几年,大模型把自然语言处理彻底重塑了。GPT 出来之前,NLP 领域的状态是:每个任务一套模型,每个场景一批数据,每个公司一条流水线,互不通用,边界清晰。GPT 之后,这套逻辑被一个预训练底座 + 任务微调的范式整个替换掉了。
文本摘要作为自然语言处理(NLP)的核心任务,其质量评估通常需要兼顾一致性(Consistency)、连贯性(Coherence)、流畅性(Fluency)和相关性(Relevance)等多个维度。
华东师范大学Planing Lab提出APEX框架,通过自然语言指令实现学术海报的局部可控编辑,并引入「审查—调整」机制提升编辑可靠性。
文本提示图像分割(Text-prompted image segmentation)是实现精细化视觉理解的关键技术,在人机交互、具身智能及机器人等前沿领域具有重大的战略意义。这项技术使机器能够根据自然语言指令,在复杂的视觉场景中定位并分割出任意目标。
我们经常在一些对比 AI 性能的测试中,看到宣称基础模型在自然语言理解、推理或编程任务等性能超人类的相关报道。
随着通用型(Generalist)机器人策略的发展,机器人能够通过自然语言指令在多种环境中完成各类任务,但这也带来了显著的挑战。
一直以来,传统 MAS 依赖自然语言沟通,各个 LLM 之间用文本交流思路。这种方法虽然可解释,但冗长、低效、信息易丢失。LatentMAS 则让智能体直接交换内部的隐藏层表示与 KV-cache 工作记忆,做到了:
我们距离“一人造一家公司”、亦或者“仅凭自然语言就能开发出一款完整的应用甚至游戏”还有多远?
视觉-语言-动作模型(VLA)在机器人操控领域展现出巨大潜力。通过赋予预训练视觉-语言模型(VLM)动作生成能力,机器人能够理解自然语言指令并在多样化场景中展现出强大的泛化能力。然而,这类模型在应对长时序或精细操作任务时,仍然存在性能下降的现象。