从VLA到RoboOmni,全模态具身新范式让机器人察言观色、听懂话外音
从VLA到RoboOmni,全模态具身新范式让机器人察言观色、听懂话外音复旦⼤学、上海创智学院与新加坡国立⼤学联合推出全模态端到端操作⼤模型 RoboOmni,统⼀视觉、⽂本、听觉与动作模态,实现动作⽣成与语⾳交互的协同控制。开源 140K 条语⾳ - 视觉 - ⽂字「情境指令」真机操作数据,引领机器⼈从「被动执⾏⼈类指令」迈向「主动提供服务」新时代。
复旦⼤学、上海创智学院与新加坡国立⼤学联合推出全模态端到端操作⼤模型 RoboOmni,统⼀视觉、⽂本、听觉与动作模态,实现动作⽣成与语⾳交互的协同控制。开源 140K 条语⾳ - 视觉 - ⽂字「情境指令」真机操作数据,引领机器⼈从「被动执⾏⼈类指令」迈向「主动提供服务」新时代。
近期,HuggingFace 发布的超过 200 页的超长技术博客,系统性地分享训练先进 LLM 的端到端经验。
近期,Google DeepMind 发布新一代具身大模型 Gemini Robotics 1.5,其核心亮点之一便是被称为 Motion Transfer Mechanism(MT)的端到端动作迁移算法 —— 无需重新训练,即可把不同形态机器人的技能「搬」到自己身上。不过,官方技术报告对此仅一笔带过,细节成谜。
大语言模型(LLM)的「炼丹师」们,或许都曾面临一个共同的困扰:为不同任务、不同模型手动调整解码超参数(如 temperature 和 top-p)。这个过程不仅耗时耗力,而且一旦模型或任务发生变化,历史经验便瞬间失效,一切又得从头再来。
现在,NTU联合StepFun提出了IGGT (Instance-Grounded Geometry Transformer) ,一个创新的端到端大型统一Transformer,首次将空间重建与实例级上下文理解融为一体。
国内首个利用世界模型生成数据实现真机泛化的端到端VLA具身基础模型GigaBrain-0重磅发布。
自回归(AR)大语言模型逐 token 顺序解码的范式限制了推理效率;扩散 LLM(dLLM)以并行生成见长,但过去难以稳定跑赢自回归(AR)模型,尤其是在 KV Cache 复用、和 可变长度 支持上仍存挑战。
为破解大模型长思维链的效率难题,并且为了更好的端到端加速落地,我们将思考早停与投机采样无缝融合,提出了 SpecExit 方法,利用轻量级草稿模型预测 “退出信号”,在避免额外探测开销的同时将思维链长度缩短 66%,vLLM 上推理端到端加速 2.5 倍。
每隔一阵子,总有人宣告“RAG已死”:上下文越来越长、端到端多模态模型越来越强,好像不再需要检索与证据拼装。但真正落地到复杂文档与可溯源场景,你会发现死掉的只是“只切文本的旧RAG”。
本文介绍了一种用高数据效率强化学习算法 SAC 训练流策略的新方案,可以端到端优化真实的流策略,而无需采用替代目标或者策略蒸馏。SAC FLow 的核心思想是把流策略视作一个 residual RNN,再用 GRU 门控和 Transformer Decoder 两套速度参数化。