
超越AF2?Iambic、英伟达、加州理工学院开发多尺度深度生成模型,进行状态特异性蛋白质-配体复合物结构预测
超越AF2?Iambic、英伟达、加州理工学院开发多尺度深度生成模型,进行状态特异性蛋白质-配体复合物结构预测由蛋白质和小分子配体形成的结合复合物无处不在,对生命至关重要。虽然最近科学家在蛋白质结构预测方面取得了进展,但现有算法无法系统地预测结合配体结构及其对蛋白质折叠的调节作用。
由蛋白质和小分子配体形成的结合复合物无处不在,对生命至关重要。虽然最近科学家在蛋白质结构预测方面取得了进展,但现有算法无法系统地预测结合配体结构及其对蛋白质折叠的调节作用。
为了使机器具有人类的想象力,深度生成模型取得了重大进展。这些模型能创造逼真的样本,尤其是扩散模型,在多个领域表现出色。扩散模型解决了其他模型的限制,如 VAEs 的后验分布对齐问题、GANs 的不稳定性、EBMs 的计算量大和 NFs 的网络约束问题。
2023年,AI成了科技圈的热词,新老玩家云集。到了2024年,其热度持续飙升。首先是OpenAI创始人山姆·奥特曼欲为AI芯片项目寻求5-7万亿美元的资金,随后,OpenAI推出了一款视频生成模型“Sora”,引发全球大讨论。
我们接连被谷歌的多模态模型 Gemini 1.5 以及 OpenAI 的视频生成模型 Sora 所震撼到,前者可以处理的上下文窗口达百万级别,而后者生成的视频能够理解运动中的物理世界,被很多人称为「世界模型」。
从文本生成模型 GPT、文生图模型 DALL·E,到文生视频模型 Sora,OpenAI 可以说成功跑通了 AGI 的所有技术栈,为什么是 OpenAI 而不是谷歌、Meta?
过去几天,OpenAI 非常热闹,先有 AI 大牛 Andrej Karpathy 官宣离职,后有视频生成模型 Sora 撼动 AI 圈。
简单粗暴的理解,就是语言能力足够强大之后,它带来的泛化能力直接可以学习图像视频数据和它体现出的模式,然后还可以直接用学习来的图像生成模型最能理解的方式,给这些利用了引擎等已有的强大而成熟的视频生成技术的视觉模型模块下指令,最终生成我们看到的逼真而强大的对物理世界体现出“理解”的视频。
过去几个月中,随着 GPT-4V、DALL-E 3、Gemini 等重磅工作的相继推出,「AGI 的下一步」—— 多模态生成大模型迅速成为全球学者瞩目的焦点。
在 2024 世界经济论坛的一次会谈中,图灵奖得主、Meta 首席 AI 科学家 Yann LeCun 被问到了这个问题。他认为,虽然这个问题还没有明确的答案,但适合用来处理视频的模型并不是我们现在大范围应用的生成模型。而且新的模型应该学会在抽象的表征空间中预测,而不是在像素空间中。
AI 视频生成,是最近最热门的领域之一。各个高校实验室、互联网巨头 AI Lab、创业公司纷纷加入了 AI 视频生成的赛道。Pika、Gen-2、Show-1、VideoCrafter、ModelScope、SEINE、LaVie、VideoLDM 等视频生成模型的发布,更是让人眼前一亮。