Loop-ViT:让AI学会「反复思考」,3.8M参数小模型追平人类平均水平
Loop-ViT:让AI学会「反复思考」,3.8M参数小模型追平人类平均水平当我们解一道复杂的数学题或观察一幅抽象图案时,大脑往往需要反复思考、逐步推演。然而,当前主流的深度学习模型却走的是「一次通过」的路线——输入数据,经过固定层数的网络,直接输出答案。
当我们解一道复杂的数学题或观察一幅抽象图案时,大脑往往需要反复思考、逐步推演。然而,当前主流的深度学习模型却走的是「一次通过」的路线——输入数据,经过固定层数的网络,直接输出答案。
刚刚,英伟达杰出工程师许冰(Bing Xu)在 GitHub 上开源了一个新项目 VibeTensor,让我们看到了 AI 在编程方面的强大实力。从名字也能看出来,这是 Vibe Coding 的成果。事实也确实如此,这位谷歌学术引用量超 20 万的工程师在 X 上表示:「这是第一个完全由 AI 智能体生成的深度学习系统,没有一行人类编写的代码。」
竟然只需要一次Ctrl+V?这可能是深度学习领域为数不多的“免费午餐”。
最近,一篇由中国团队领衔全球24所TOP高校机构发布,用于评测LLMs for Science能力高低的论文,在外网炸了!当晚,Keras (最高效易用的深度学习框架之一)缔造者François Chollet转发论文链接,并喊出:「我们迫切需要新思路来推动人工智能走向科学创新。」
2026年新年第一天,DeepSeek上传新论文。给何恺明2016成名作ResNet中提出的深度学习基础组件“残差连接”来了一场新时代的升级。残差连接自2016年ResNet问世以来,一直是深度学习架构的基石。
对抗样本(adversarial examples)的迁移性(transferability)—— 在某个模型上生成的对抗样本能够同样误导其他未知模型 —— 被认为是威胁现实黑盒深度学习系统安全的核心因素。尽管现有研究已提出复杂多样的迁移攻击方法,却仍缺乏系统且公平的方法对比分析:(1)针对攻击迁移性,未采用公平超参设置的同类攻击对比分析;(2)针对攻击隐蔽性,缺乏多样指标。
人工智能模型的安全对齐问题,一直像悬在头顶的达摩克利斯之剑。 自对抗样本被发现以来,这一安全对齐缺陷,广泛、长期地存在与不同的深度学习模型中。
吴恩达 (Andrew Ng) 执教的斯坦福 CS230 深度学习旗舰课程已更新至 2025 秋季版,首讲视频现已公开!课程采用翻转课堂模式,学生需提前观看 Coursera 上的 deeplearning.ai 专项课程视频(包括神经网络基础、超参数调优、结构化机器学习项目等模块),然后参加线下课程。
就在刚刚,斯坦福大学经典 CV 课程 ——《CS231n:深度学习与计算机视觉》(2025 春季)正式上线了!课程网站:https://cs231n.stanford.edu/该系列课程深入探讨了深度学习架构的细节,并重点关注围绕图像分类、定位和检测等视觉识别任务的端到端模型学习,尤其是图像分类领域。
AI教父Hinton荣膺诺贝尔奖,可谓是实至名归。如今,他发表的「玻尔兹曼机」震撼演讲,已登上APS期刊。这一曾催化深度学习革命的「历史酶」,究竟讲了什么?