
CVPR满分论文 | 英伟达开源双目深度估计大模型FoundationStereo
CVPR满分论文 | 英伟达开源双目深度估计大模型FoundationStereo本文介绍了 FoundationStereo,一种用于立体深度估计的基础模型,旨在实现强大的零样本泛化能力。
本文介绍了 FoundationStereo,一种用于立体深度估计的基础模型,旨在实现强大的零样本泛化能力。
下班回家后你正深陷于一部两小时的综艺节目中,渴望找到那些让人捧腹的爆笑片段,却如同大海捞针。或者,在紧张刺激的足球赛中,你渴望捕捉到那决定性的绝杀瞬间,但传统 AI 视频处理技术效率低下,且模型缺乏泛化能力。为解决这些问题,香港中文大学(深圳)唐晓莹课题组联合腾讯 PCG 发布 TRACE 技术,通过因果事件建模为视频理解大模型提供精准的时间定位能力。
南洋理工大学的研究团队提出了MedRAG模型,通过结合知识图谱推理增强大语言模型(LLM)的诊断能力,显著提升智能健康助手的诊断精度和个性化建议水平。MedRAG在真实临床数据集上表现优于现有模型,准确率提升11.32%,并具备良好的泛化能力,可广泛应用于不同LLM基模型。
Magma是一个新型多模态基础模型,能够理解和执行多模态任务,适用于数字和物理环境:通过标记集合(SoM)和标记轨迹(ToM)技术,将视觉语言数据转化为可操作任务,显著提升了空间智能和任务泛化能力。
本文提出了一种轨迹级别 SE (3) 等变的扩散策略(ET-SEED),通过将等变表示学习和扩散策略结合,使机器人能够在极少的示范数据下高效学习复杂操作技能,并能够泛化到不同物体姿态和环境中。
对 LLM 来说,Pre-training 的时代已经基本结束了。视频模型的 Scaling Law,瓶颈还很早。具身智能:完全具备人类泛化能力的机器人,在我们这代可能无法实现
多模态理解与生成一体化模型,致力于将视觉理解与生成能力融入同一框架,不仅推动了任务协同与泛化能力的突破,更重要的是,它代表着对类人智能(AGI)的一种深层探索。
近年来,视觉-语言-动作模型(Vision-Language-Action, VLA)在诸多机器人任务上取得了显著的进展,但它们仍面临一些关键问题,例如由于仅依赖从成功的执行轨迹中进行行为克隆,导致对新任务的泛化能力较差。
近期,新加坡国立大学计算机学院的邵林团队提出了 D(R,O) Grasp:一种面向跨智能体灵巧抓取的机器人与物体交互统一表示。该方法通过创新性地建模机器人手与物体在抓取姿态下的交互关系,成功实现了对多种机器人手型与物体几何形状的高度泛化能力,为灵巧抓取技术的未来开辟了全新的方向。
Lilian Weng离职OpenAI后首篇博客发布!文章深入讨论了大模型强化学习中的奖励欺骗问题。随着语言模型在许多任务上的泛化能力不断提升,以及RLHF逐渐成为对齐训练的默认方法,奖励欺骗在语言模型的RL训练中已经成为一个关键的实践性难题。