吃“有毒”数据,大模型反而更听话了!来自港科大&华为诺亚方舟实验室
吃“有毒”数据,大模型反而更听话了!来自港科大&华为诺亚方舟实验室相比于一味规避“有毒”数据,以毒攻毒,干脆给大模型喂点错误文本,再让模型剖析、反思出错的原因,反而能够让模型真正理解“错在哪儿了”,进而避免胡说八道。
来自主题: AI技术研报
4568 点击 2023-10-26 20:25
相比于一味规避“有毒”数据,以毒攻毒,干脆给大模型喂点错误文本,再让模型剖析、反思出错的原因,反而能够让模型真正理解“错在哪儿了”,进而避免胡说八道。
大型语言模型能力惊人,但在部署过程中往往由于规模而消耗巨大的成本。华盛顿大学联合谷歌云计算人工智能研究院、谷歌研究院针对该问题进行了进一步解决,提出了逐步微调(Distilling Step-by-Step)的方法帮助模型训练。
而在AI大模型的相关市场竞争中,除了底层的算法、架构外,“语料”则是一个被反复提及的关键要素。
在高性能计算(HPC)、人工智能(AI)、和数据分析等领域,图形处理器(GPUs)正在发挥越来越重要的作用。其中,NVIDIA的 A100尤为引人注目。这是英伟达最强大的显卡处理器,也是当前使用最广泛大模型训练用的显卡。