AI资讯新闻榜单内容搜索-模型训练

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 模型训练
RAG还是微调?微软出了一份特定领域大模型应用建设流程指南

RAG还是微调?微软出了一份特定领域大模型应用建设流程指南

RAG还是微调?微软出了一份特定领域大模型应用建设流程指南

检索增强生成(RAG)和微调(Fine-tuning)是提升大语言模型性能的两种常用方法,那么到底哪种方法更好?在建设特定领域的应用时哪种更高效?微软的这篇论文供你选择时进行参考。

来自主题: AI技术研报
5867 点击    2024-02-17 12:09
语音生成的「智能涌现」:10万小时数据训练,亚马逊祭出10亿参数BASE TTS

语音生成的「智能涌现」:10万小时数据训练,亚马逊祭出10亿参数BASE TTS

语音生成的「智能涌现」:10万小时数据训练,亚马逊祭出10亿参数BASE TTS

伴随着生成式深度学习模型的飞速发展,自然语言处理(NLP)和计算机视觉(CV)已经经历了根本性的转变,从有监督训练的专门模型,转变为只需有限的明确指令就能完成各种任务的通用模型

来自主题: AI技术研报
5143 点击    2024-02-15 21:45
性能提升、成本降低,这是分布式强化学习算法最新研究进展

性能提升、成本降低,这是分布式强化学习算法最新研究进展

性能提升、成本降低,这是分布式强化学习算法最新研究进展

分布式强化学习是一个综合的研究子领域,需要深度强化学习算法以及分布式系统设计的互相感知和协同。考虑到 DDRL 的巨大进步,我们梳理形成了 DDRL 技术的展历程、挑战和机遇的系列文章。

来自主题: AI技术研报
2880 点击    2024-02-13 14:05
陈丹琦团队新作:数据量砍95%,大模型性能更强了!Less is More

陈丹琦团队新作:数据量砍95%,大模型性能更强了!Less is More

陈丹琦团队新作:数据量砍95%,大模型性能更强了!Less is More

造大模型的成本,又被打下来了!这次是数据量狂砍95%的那种。陈丹琦团队最新提出大模型降本大法——数据选择算法LESS, 只筛选出与任务最相关5%数据来进行指令微调,效果比用整个数据集还要好。

来自主题: AI技术研报
4096 点击    2024-02-10 13:15
谷歌提出全新RLHF方法:消除奖励模型,且无需对抗性训练

谷歌提出全新RLHF方法:消除奖励模型,且无需对抗性训练

谷歌提出全新RLHF方法:消除奖励模型,且无需对抗性训练

大型语言模型(LLM)的成功离不开「基于人类反馈的强化学习(RLHF)」。RLHF 可以大致可以分为两个阶段,首先,给定一对偏好和不偏好的行为,训练一个奖励模型,通过分类目标为前者分配更高的分数。

来自主题: AI技术研报
5290 点击    2024-02-10 13:02
ICLR 2024 | 首个零阶优化深度学习框架,MSU联合LLNL提出DeepZero

ICLR 2024 | 首个零阶优化深度学习框架,MSU联合LLNL提出DeepZero

ICLR 2024 | 首个零阶优化深度学习框架,MSU联合LLNL提出DeepZero

今天介绍一篇密歇根州立大学 (Michigan State University) 和劳伦斯・利弗莫尔国家实验室(Lawrence Livermore National Laboratory)的一篇关于零阶优化深度学习框架的文章 ,本文被 ICLR 2024 接收,代码已开源。

来自主题: AI技术研报
5222 点击    2024-02-09 14:11
进我的收藏夹吃灰吧:大模型加速超全指南来了

进我的收藏夹吃灰吧:大模型加速超全指南来了

进我的收藏夹吃灰吧:大模型加速超全指南来了

2023 年,大型语言模型(LLM)以其强大的生成、理解、推理等能力而持续受到高度关注。然而,训练和部署 LLM 非常昂贵,需要大量的计算资源和内存,因此研究人员开发了许多用于加速 LLM 预训练、微调和推理的方法。

来自主题: AI技术研报
4398 点击    2024-02-09 14:05
「大模型变小」成年度大趋势!1月AI四大研究精彩亮点超长总结,模型合并MoE方法是主流​

「大模型变小」成年度大趋势!1月AI四大研究精彩亮点超长总结,模型合并MoE方法是主流​

「大模型变小」成年度大趋势!1月AI四大研究精彩亮点超长总结,模型合并MoE方法是主流​

AI大模型并非越大越好?过去一个月,关于大模型变小的研究成为亮点,通过模型合并,采用MoE架构都能实现小模型高性能。

来自主题: AI技术研报
5652 点击    2024-02-09 12:11