
追剧不断网,可能背后有个AI在加班,故障诊断准度破91.79%
追剧不断网,可能背后有个AI在加班,故障诊断准度破91.79%当你的手机突然没信号时,电信工程师在做什么? 想象一下这样的场景:某个周五晚上,你正在用手机追剧,突然网络断了。与此同时,成千上万的用户也遇到了同样的问题。电信运营商的监控中心瞬间被数百个告警信息淹没 —— 基站离线、信号中断、设备故障…
当你的手机突然没信号时,电信工程师在做什么? 想象一下这样的场景:某个周五晚上,你正在用手机追剧,突然网络断了。与此同时,成千上万的用户也遇到了同样的问题。电信运营商的监控中心瞬间被数百个告警信息淹没 —— 基站离线、信号中断、设备故障…
AI领域一度陷入“上下文窗口”的军备竞赛,从几千token扩展到数百万token。这相当于给了AI一个巨大的图书馆。但这些“百万上下文”的顶级模型,它究竟是真的“理解”了,还是只是一个更会“背书”的复读机?
AI生成论文泛滥成灾,arXiv平台看不下去了—— 紧急升级审核机制,用自动化工具来检测AI生成内容。 Nature最新发现,原来每年竟然都有2%的论文会因为AI使用被拒?! 比如像,bioRxiv和medRxiv每天都要拒绝十多篇公式化AI手稿,每个月就高达7000多份。
前沿 AI 模型真的能做到博士级推理吗? 前段时间,谷歌、OpenAI 的模型都在数学奥林匹克(IMO)水平测试中达到了金牌水准,这样的表现让人很容易联想到 LLM 是不是已经具备了解决博士级科研难题的推理能力?
服装视频广告太烧钱?卡点变装太难拍? 字节跳动智能创作团队联合清华大学最新推出一款全能的视频换装模型 DreamVVT,为视频虚拟试穿领域带来了突破性进展。
思维链 (CoT) 提示技术常被认为是让大模型分步思考的关键手段,通过在输入中加入「Let’s think step by step」等提示,模型会生成类似人类的中间推理步骤,显著提升复杂任务的表现。然而,这些流畅的推理链条是否真的反映了模型的推理能力?
用过 DeepSeek-R1 等推理模型的人,大概都遇到过这种情况:一个稍微棘手的问题,模型像陷入沉思一样长篇大论地推下去,耗时耗算力,结果却未必靠谱。现在,我们或许有了解决方案。
在复杂的城市场景中,HERMES 不仅能准确预测未来三秒的车辆与环境动态(如红圈中标注的货车),还能对当前场景进行深度理解和问答(如准确识别出 “星巴克” 并描述路况)。
幻觉,作为AI圈家喻户晓的概念,这个词您可能已经听得耳朵起茧了。我们都知道它存在,也普遍接受了它似乎无法根除,是一个“老大难”问题。但正因如此,一个更危险的问题随之而来:当我们对幻觉的存在习以为常时,我们是否也开始对它背后的系统性风险变得麻木?我们是真的从第一性原理上理解了它,还是仅仅在用一个又一个的补丁(比如RAG)来被动地应对它?
GPT-5和“还我GPT-4o”的风波,闹得沸沸扬扬。 今天,奥特曼还有一次认怂了,不仅调了UI,还把o3这些老模型还了回来。