Meta浙大校友让评估模型「自学成才」,数据全合成无需人工标注,训练Llama 3 70B超过405B
Meta浙大校友让评估模型「自学成才」,数据全合成无需人工标注,训练Llama 3 70B超过405B随着LLM不断迭代,偏好和评估数据中大量的人工标注逐渐成为模型扩展的显著障碍之一。Meta FAIR的团队最近提出了一种使用迭代式方法「自学成才」的评估模型训练方法,让70B参数的Llama-3-Instruct模型分数超过了Llama 3.1-405B。
随着LLM不断迭代,偏好和评估数据中大量的人工标注逐渐成为模型扩展的显著障碍之一。Meta FAIR的团队最近提出了一种使用迭代式方法「自学成才」的评估模型训练方法,让70B参数的Llama-3-Instruct模型分数超过了Llama 3.1-405B。
让AI绘画模型变“乖”,现在仅需3秒调整模型参数。
最近 ACL 2024 论文放榜,扫了下,SMoE(稀疏混合专家)的论文不算多,这里就仔细梳理一下,包括动机、方法、有趣的发现,方便大家不看论文也能了解的七七八八,剩下只需要感兴趣再看就好。
在人工智能领域,图像生成技术一直是一个备受关注的话题。近年来,扩散模型(Diffusion Model)在生成逼真且复杂的图像方面取得了令人瞩目的进展。然而,技术的发展也引发了潜在的安全隐患,比如生成有害内容和侵犯数据版权。这不仅可能对用户造成困扰,还可能涉及法律和伦理问题。
视频时代需要自己的基础设施。VideoSys 的目标是使视频生成对于每个人而言都简便、迅速且成本低廉。
只要不到10行代码,就能让大模型数学能力(GSM8k)提升20%!
就在刚刚,Meta最新发布的Transfusion,能够训练生成文本和图像的统一模型了!完美融合Transformer和扩散领域之后,语言模型和图像大一统,又近了一步。也就是说,真正的多模态AI模型,可能很快就要来了!
这篇文章对如何进行领域模型训练进行一个简单的探讨,主要内容是对 post-pretrain 阶段进行分析,后续的 Alignment 阶段就先不提了,注意好老生常谈的“数据质量”和“数据多样性”即可。
神经网络是一种灵活且强大的函数近似方法。而许多应用都需要学习一个相对于某种对称性不变或等变的函数。图像识别便是一个典型示例 —— 当图像发生平移时,情况不会发生变化。等变神经网络(equivariant neural network)可为学习这些不变或等变函数提供一个灵活的框架。
今年以来,具身智能正在成为学术界和产业界的热门领域,相关的产品和成果层出不穷。