关于LLM-as-a-judge范式,终于有综述讲明白了
关于LLM-as-a-judge范式,终于有综述讲明白了评估和评价长期以来一直是人工智能 (AI) 和自然语言处理 (NLP) 中的关键挑战。然而,传统方法,无论是基于匹配还是基于词嵌入,往往无法判断精妙的属性并提供令人满意的结果。
评估和评价长期以来一直是人工智能 (AI) 和自然语言处理 (NLP) 中的关键挑战。然而,传统方法,无论是基于匹配还是基于词嵌入,往往无法判断精妙的属性并提供令人满意的结果。
斯坦福大学推出的IKEA Video Manuals数据集,通过4D对齐组装视频和说明书,为AI理解和执行复杂空间任务提供了新的挑战和研究基准,让机器人或AR眼镜指导家具组装不再是梦。
MIT的76页深度报告!AI辅助创新显著增长——这毋庸置疑。但,值得注意的是,AI加剧了不同水平科学家产出的差异,这与科学家的判断力强相关,意味着缺乏判断力的科学家在未来可能会被慢慢淘汰……
研究人员提出了一种方法,能够在领域数据分布持续变化的动态环境中,基于随机时刻观测的数据分布,在任意时刻生成适用的神经网络,实现前所未有的泛化能力。
大语言模型直接理解复杂图结构的新方法来了:
提升LLM数学能力的新方法来了——
大语言模型(LLM)在各种任务上展示了卓越的性能。然而,受到幻觉(hallucination)的影响,LLM 生成的内容有时会出现错误或与事实不符,这限制了其在实际应用中的可靠性。
本文将介绍数学推理场景下的首个分布外检测研究成果。
自我博弈,很神奇吧?
Prime Intellect 宣布通过去中心化方式训练完成了一个 10B 模型。30 号,他们开源了一切,包括基础模型、检查点、后训练模型、数据、PRIME 训练框架和技术报告。据了解,这应该是有史以来首个以去中心化形式训练得到的 10B 大模型。