全面梳理200+篇前沿论文,视觉生成模型理解物理世界规律的通关密码,都在这篇综述里了!
全面梳理200+篇前沿论文,视觉生成模型理解物理世界规律的通关密码,都在这篇综述里了!当下,视频生成备受关注,有望成为处理物理知识的 “世界模型” (World Model),助力自动驾驶、机器人等下游任务。然而,当前模型在从 “生成” 迈向世界建模的过程中,存在关键短板 —— 对真实世界物理规律的刻画能力不足。
当下,视频生成备受关注,有望成为处理物理知识的 “世界模型” (World Model),助力自动驾驶、机器人等下游任务。然而,当前模型在从 “生成” 迈向世界建模的过程中,存在关键短板 —— 对真实世界物理规律的刻画能力不足。
近日,资深机器学习研究科学家 Cameron R. Wolfe 更新了一篇超长的博客文章,详细介绍了 LLM scaling 的当前状况,并分享了他对 AI 研究未来的看法。
香港大学联合上海人工智能实验室,华为诺亚方舟实验室提出高效扩散模型 LiT:探索了扩散模型中极简线性注意力的架构设计和训练策略。LiT-0.6B 可以在断网状态,离线部署在 Windows 笔记本电脑上,遵循用户指令快速生成 1K 分辨率逼真图片。
27 页综述,354 篇参考文献!史上最详尽的视觉定位综述,内容覆盖过去十年的视觉定位发展总结,尤其对最近 5 年的视觉定位论文系统性回顾,内容既涵盖传统基于检测器的视觉定位,基于 VLP 的视觉定位,基于 MLLM 的视觉定位,也涵盖从全监督、无监督、弱监督、半监督、零样本、广义定位等新型设置下的视觉定位。
外媒SemiAnalysis的一篇深度长文,全面分析了DeepSeek背后的秘密——不是「副业」项目、实际投入的训练成本远超600万美金、150多位高校人才千万年薪,攻克MLA直接让推理成本暴降......
现在,豆包大模型团队联合北京交通大学、中国科学技术大学提出了VideoWorld。
当谷歌在 2018 年推出 BERT 模型时,恐怕没有料到这个 3.4 亿参数的模型会成为自然语言处理领域的奠基之作。
首个FP4精度的大模型训练框架来了,来自微软研究院!
相比LLM和Agent领域日新月异、高度成熟的进展相比,数据收集方面的规范有明显滞后。由超过50名研究人员组成的「数据溯源计划」(DPI)旨在回答这样一个问题:AI训练所需的数据究竟来自何处?
基于一段文本提问时,人类和大模型会基于截然不同的思维模式给出问题。大模型喜欢那些需要详细解释才能回答的问题,而人类倾向于提出更直接、基于事实的问题。