
最大的开源GraphRag:知识图谱完全自主构建|港科大&华为
最大的开源GraphRag:知识图谱完全自主构建|港科大&华为知识图谱(KGs)已经可以很好地将海量的复杂信息整理成结构化的、机器可读的知识,但目前的构建方法仍需要由领域专家预先创建模式,这限制了KGs的可扩展性、适应性和领域覆盖范围。
知识图谱(KGs)已经可以很好地将海量的复杂信息整理成结构化的、机器可读的知识,但目前的构建方法仍需要由领域专家预先创建模式,这限制了KGs的可扩展性、适应性和领域覆盖范围。
AI能看图,也能讲故事,但能理解“物体在哪”“怎么动”吗? 空间智能,正是大模型走向具身智能的关键拼图。
谁说强化学习只能是蛋糕上的樱桃,说不定,它也可以是整个蛋糕呢?
本文将介绍 DeepMath-103K 数据集。该工作由腾讯 AI Lab 与上海交通大学团队共同完成。
视觉注意力机制,又有新突破,来自香港大学和英伟达。
第一作者陈昌和是美国密歇根大学的研究生,师从 Nima Fazeli 教授,研究方向包括基础模型、机器人学习与具身人工智能,专注于机器人操控、物理交互与控制优化。
近年来,大语言模型(LLM)以其卓越的文本生成和逻辑推理能力,深刻改变了我们与技术的互动方式。然而,这些令人瞩目的表现背后,LLM的内部机制却像一个神秘的“黑箱”,让人难以捉摸其决策过程。
大幅缓解LLM偏科,只需调整SFT训练集的组成。
在大语言模型蓬勃发展的背景下,Transformer 架构依然是不可替代的核心组件。尽管其自注意力机制存在计算复杂度为二次方的问题,成为众多研究试图突破的重点
为什么语言模型能从预测下一个词中学到很多,而视频模型却从预测下一帧中学到很少?