用「进化+压力测试」自动生成的竞赛级编程题,各家大模型谁更hold住?
用「进化+压力测试」自动生成的竞赛级编程题,各家大模型谁更hold住?在当前评测生成式模型代码能力的浪潮中,传统依赖人工编写的算法基准测试集,正日益暴露出可扩展性不足与数据污染严重两大瓶颈。
在当前评测生成式模型代码能力的浪潮中,传统依赖人工编写的算法基准测试集,正日益暴露出可扩展性不足与数据污染严重两大瓶颈。
在文化遗产与人工智能的交叉处,有一类问题既美也难:如何让机器「看懂」古希腊的陶器——不仅能识别它的形状或图案,还能推断年代、产地、工坊甚至艺术归属?有研究人员给出了一条实用且富有启发性的答案:把大型多模态模型(MLLM)放在「诊断—补弱—精细化评估」的闭环中训练,并配套一个结构化的评测基准,从而让模型在高度专业化的文化遗产领域表现得更接近专家级能力。
蚂蚁集团这波操作大圈粉!智东西10月28日报道,10月25日,蚂蚁集团在arXiv上传了一篇技术报告,一股脑将自家2.0系列大模型训练的独家秘籍全盘公开。今年9月至今,蚂蚁集团百灵大模型Ling 2.0系列模型陆续亮相,其万亿参数通用语言模型Ling-1T多项指标位居开源模型的榜首
当AI开始「自己学会学习」,人类的角色正在被重写。DeepMind最新研究DiscoRL,让智能体在多环境交互中自主发现强化学习规则——无需人类设计算法。它在Atari基准中击败MuZero,在从未见过的游戏中依旧稳定高效。
当强大的多模态大语言模型应用于地球科学研究时,它面临着无法忽视的 「阿克琉斯之踵」
近期,DeepSeek-OCR提出了“Vision as Context Compression”的新思路,然而它主要研究的是通过模型的OCR能力,用图片压缩文档。
人眼秒懂,AI抓瞎!网友用光学错觉玩坏大模型,全网百万人围观。
能看懂相机参数,并且生成相应视角图片的多模态模型来了。
具身智能是近年来非常火概念。一个智能体(比如人)能够在环境中完成感知、理解与决策的闭环,并通过环境反馈不断进入新一轮循环,直至任务完成。这一过程往往依赖多种技能,涵盖了底层视觉对齐,空间感知,到上层决策的不同能力,这些能力便是广义上的具身智能。
刚刚,不发论文、爱发博客的 Thinking Machines Lab (以下简称 TML)再次更新,发布了一篇题为《在策略蒸馏》的博客。在策略蒸馏(on-policy distillation)是一种将强化学习 (RL) 的纠错相关性与 SFT 的奖励密度相结合的训练方法。在将其用于数学推理和内部聊天助手时,TML 发现在策略蒸馏可以极低的成本超越其他方法。