Transformer终结者!谷歌DeepMind全新MoR架构问世,新一代魔王来了
Transformer终结者!谷歌DeepMind全新MoR架构问世,新一代魔王来了Transformer杀手来了?KAIST、谷歌DeepMind等机构刚刚发布的MoR架构,推理速度翻倍、内存减半,直接重塑了LLM的性能边界,全面碾压了传统的Transformer。网友们直呼炸裂:又一个改变游戏规则的炸弹来了。
Transformer杀手来了?KAIST、谷歌DeepMind等机构刚刚发布的MoR架构,推理速度翻倍、内存减半,直接重塑了LLM的性能边界,全面碾压了传统的Transformer。网友们直呼炸裂:又一个改变游戏规则的炸弹来了。
近日,ICCV 2025(国际计算机视觉大会)公布论文录用结果,理想汽车共有 8 篇论文入选,其中 3 篇来自基座模型团队。
今年初以 DeepSeek-r1 为代表的大模型在推理任务上展现强大的性能,引起广泛的热度。然而在面对一些无法回答或本身无解的问题时,这些模型竟试图去虚构不存在的信息去推理解答,生成了大量的事实错误、无意义思考过程和虚构答案,也被称为模型「幻觉」 问题,如下图(a)所示,造成严重资源浪费且会误导用户,严重损害了模型的可靠性(Reliability)。
本文主要介绍 xML 团队的论文:Discrete Diffusion in Large Language and Multimodal Models: A Survey。
当前最强大的视觉语言模型(VLMs)虽然能“看图识物”,但在理解电影方面还不够“聪明”。
Agent能力每7个月翻一番!
GPT-4o、Gemini这些顶级语音模型虽然展现了惊人的共情对话能力,但它们的技术体系完全闭源。
超长上下文窗口的大模型也会经常「失忆」,「记忆」也是需要管理的。
从GPT-2到Llama 4,大模型这几年到底「胖」了多少?从百亿级密集参数到稀疏MoE架构,从闭源霸权到开源反击,Meta、OpenAI、Mistral、DeepSeek……群雄割据,谁能称王?
难得难得,几大AI巨头不竞争了不抢人了,改联合一起发研究了。