
华人团队终结Token危机:扩散模型数据潜力超自回归三倍
华人团队终结Token危机:扩散模型数据潜力超自回归三倍Token危机真的要解除了吗? 最新研究发现,在token数量受限的情况下,扩散语言模型的数据潜力可达自回归模型的三倍多。
Token危机真的要解除了吗? 最新研究发现,在token数量受限的情况下,扩散语言模型的数据潜力可达自回归模型的三倍多。
扩散语言模型(DLMs)是超强的数据学习者。 token 危机终于要不存在了吗? 近日,新加坡国立大学 AI 研究者 Jinjie Ni 及其团队向着解决 token 危机迈出了关键一步。
在万物互联的智能时代,具身智能和空间智能需要的不仅是视觉和语言,还需要突破传统感官限制的能力
现有的数据合成方法在合理性和分布一致性方面存在不足,且缺乏自动适配不同数据的能力,扩展性较差。
美司法部考虑强制谷歌拆分,解决垄断问题。
仅需600多条数据,就能训练自己的长输出模型了?!
大模型产业发展,需要可信中立的数据深加工平台,如何填补空白?
AI卫星影像知识生成模型数据集稀缺的问题,又有新解了。
本周五,一年一度的AI春晚“北京智源大会”正式开幕。本次大会AI明星浓度,放在全球范围内可能也是独一份:OpenAI Sora负责人Aditya Ramesh作为神秘嘉宾进行了分享,并接受了DiT作者谢赛宁的“拷问”、李开复与张亚勤炉边对话AGI、还集齐了国内大模型“四小龙”,百川智能CEO王小川、智谱AI CEO张鹏、月之暗面CEO杨植麟、面壁智能CEO李大海…… 这还只是第一天上午的开幕式。
本文是对发表于模式识别领域顶刊Pattern Recognition 2024的最新综述论文:「Advancements in Point Cloud Data Augmentation for Deep Learning: A Survey 」的解读。