
自动学会工具解题,RL扩展催化奥数能力激增17%
自动学会工具解题,RL扩展催化奥数能力激增17%在大模型推理能力提升的探索中,工具使用一直是克服语言模型计算局限性的关键路径。不过,当今的大模型在使用工具方面还存在一些局限,比如预先确定了工具的使用模式、限制了对最优策略的探索、实现透明度不足等。
在大模型推理能力提升的探索中,工具使用一直是克服语言模型计算局限性的关键路径。不过,当今的大模型在使用工具方面还存在一些局限,比如预先确定了工具的使用模式、限制了对最优策略的探索、实现透明度不足等。
本文探讨基于树搜索的大语言模型推理过程中存在的「过思考」与「欠思考」问题,并提出高效树搜索框架——Fetch。本研究由腾讯 AI Lab 与厦门大学、苏州大学研究团队合作完成。
只要微调模型生成的前8-32个词,就能让大模型推理能力达到和传统监督训练一样的水平?
本文介绍了一项突破性的AI推理技术创新——思维草图(SoT)框架。该框架从人类认知过程中获取灵感,通过一个200M大小的路由模型将LLM引导到概念链、分块符号化和专家词汇三种推理范式,巧妙地解决了大语言模型推理过程中的效率瓶颈。
本文介绍了英特尔®至强®处理器在AI推理领域的优势,如何使用一键部署的镜像进行纯CPU环境下基于AMX加速后的DeepSeek-R1 7B蒸馏模型推理,以及纯CPU环境下部署DeepSeek-R1 671B满血版模型实践。
国际可重构计算领域顶级会议 ——FPGA 2025 在落幕之时传来消息,今年的最佳论文颁发给了无问芯穹和上交、清华共同提出的视频生成大模型推理 IP 工作 FlightVGM,这是 FPGA 会议首次将该奖项授予完全由中国大陆科研团队主导的研究工作,同时也是亚太国家团队首次获此殊荣。
强化学习训练数据越多,模型推理能力就越强?新研究提出LIM方法,揭示提升推理能力的关键在于优化数据质量,而不是数据规模。该方法在小模型上优势尽显。从此,强化学习Scaling Law可能要被改写了!
用代码训练大模型思考,其他方面的推理能力也能提升。
最新大语言模型推理测试引众议,DeepSeek R1常常在提供错误答案前就“我放弃”了?? Cursor刚刚参与了一项研究,他们基于NPR周日谜题挑战(The Sunday Puzzle),构建了一个包含近600个问题新基准测试。
o1背后的推理原理,斯坦福和伯克利帮我们总结好了!