“缺乏信仰”是我国AI落后的主因,清华教授真这么说的?
“缺乏信仰”是我国AI落后的主因,清华教授真这么说的?中国厂商如何在AI浪潮中破局? 近日,在2024年诺贝尔三大科学奖项中,两大奖项与人工智能研究相关,先是物理学奖颁给了曾获图灵奖的机器学习先驱,紧接着化学奖也将一半颁给了“程序员”。
中国厂商如何在AI浪潮中破局? 近日,在2024年诺贝尔三大科学奖项中,两大奖项与人工智能研究相关,先是物理学奖颁给了曾获图灵奖的机器学习先驱,紧接着化学奖也将一半颁给了“程序员”。
毫无疑问,多智能体肯定是 OpenAI 未来重要的研究方向之一,前些天 OpenAI 著名研究科学家 Noam Brown 还在 X 上为 OpenAI 正在组建的一个新的多智能体研究团队招募机器学习工程师。
随着诺贝尔物理学奖颁给了「机器学习之父」Geoffrey Hinton,另一个借鉴物理学概念的模型架构也横空出世——微软清华团队的最新架构Differential Transformer,从注意力模块入手,实现了Transformer的核心能力提升。
2024年诺贝尔物理学奖揭晓,今年颁给了约翰·霍普菲尔德(John J. Hopfield)和图灵奖得主、AI教父杰弗里·辛顿(Geoffrey E. Hinton),以表彰他们利用人工神经网络进行机器学习的基础发现和发明。
十天前的 Meta Connect 2024 大会上,开源领域迎来了可在边缘和移动设备上的运行的轻量级模型 Llama 3.2 1B 和 3B。两个版本都是纯文本模型,但也具备多语言文本生成和工具调用能力。Meta 表示,这些模型可让开发者构建个性化的、在设备本地上运行的通用应用 —— 这类应用将具备很强的隐私性,因为数据无需离开设备。
近日,机器学习研究员、畅销书《Python 机器学习》作者 Sebastian Raschka 又分享了一篇长文,主题为《从头开始构建一个 GPT 风格的 LLM 分类器》。
新浪微博机器学习团队 AI Lab 负责人张俊林,针对OpenAI o1原理进行逆向工程图解。
科学技术的快速发展过程中,机器学习研究作为创新的核心驱动力,面临着实验过程复杂、耗时且易出错,研究进展缓慢以及对专门知识需求高的挑战。近年来,LLM 在生成文本和代码方面展现出了强大的能力,为科学研究带来了前所未有的可能性。然而,如何系统化地利用这些模型来加速机器学习研究仍然是一个有待解决的问题。
KAN的诞生,开启了机器学习的新纪元!而这背后,竟是MIT华人科学家最先提出的实践想法。从KAN到KAN 2.0,这个替代MLP全新架构正在打开神经网络的黑盒,为下一步科学发现打开速通之门。
作为谷歌 DeepMind 机器学习团队的重量级人物,Nando de Freitas 曾共同领导开发出了 Imagen 2、Gato、Genie、Griffin、Lyria 等名噪一时的大模型产品。