
专访斯坦福Arc创始人Patrick Hsu:独家揭秘未来AI制药路线图
专访斯坦福Arc创始人Patrick Hsu:独家揭秘未来AI制药路线图近期,他与合作者创建了名为 EVO 2 的生物学基础模型,该模型通过学习生命的基础信息层——DNA,来解释和生成跨所有生命领域的基因序列。
近期,他与合作者创建了名为 EVO 2 的生物学基础模型,该模型通过学习生命的基础信息层——DNA,来解释和生成跨所有生命领域的基因序列。
生物医学研究是我们进行人类健康研究、疾病治疗、药物研发以及促进临床护理进步的基石。
细胞治疗,尤其是CAR-T,被誉为“活的药物”,但其开发与生产面临着一个根本性挑战:我们难以精准控制和预测这些活细胞在人体内的最终状态和功能。同一批次生产的CAR-T细胞,有的能高效清除肿瘤,有的却迅速“耗竭”,这种功能异质性是制约疗效、导致高昂制造成本的核心瓶颈。如何通过基因编辑等手段,将细胞调整到最理想的“战斗”状态,是该领域亟待突破的圣杯。
具身智能太过火热,今天又一个亿级融资,砸向机器人领域。
斯坦福大学 2025 年春季的 CS336 课程「从头开始创造语言模型(Language Models from Scratch)」相关课程和材料现已在网上全面发布!
大语言模型在数学证明中常出现推理漏洞,如跳步或依赖特殊值。斯坦福等高校团队提出IneqMath基准,将不等式证明拆解为可验证的子任务。结果显示,模型的推理正确率远低于答案正确率,暴露出其在数学推理上的缺陷。
随着语言模型在强化学习和 agentic 领域的进步,agent 正在从通用领域快速渗透到垂直领域,科学和生物医药这类高价值领域尤其受到关注。
大语言模型解决不等式证明问题时,可以给出正确答案,但大多数时候是靠猜。推理过程经不起推敲,逻辑完全崩溃。
2025年1月到5月间,斯坦福大学的研究团队完成了一项本应在AI热潮开始时就进行的调查。他们采访了1500名美国员工和52名AI专家,评估了104个职业中的844项具体任务。
为此,香港中文大学、字节跳动Seed和斯坦福大学研究团队出手,提出了一种面向同声传译的序贯策略优化框架 (Sequential Policy Optimization for Simultaneous Machine Translation, SeqPO-SiMT)。