
英伟达新对话QA模型准确度超GPT-4,却遭吐槽:无权重代码意义不大
英伟达新对话QA模型准确度超GPT-4,却遭吐槽:无权重代码意义不大昨天,Meta、纽约大学的研究者用「自我奖励方法」,让大模型自己生成自己的微调数据,从而在 Llama 2 70B 的迭代微调后超越了 GPT-4。今天,英伟达的全新对话 QA 模型「ChatQA-70B」在不使用任何 GPT 模型数据的情况下,在 10 个对话 QA 数据集上的平均得分略胜于 GPT-4。
昨天,Meta、纽约大学的研究者用「自我奖励方法」,让大模型自己生成自己的微调数据,从而在 Llama 2 70B 的迭代微调后超越了 GPT-4。今天,英伟达的全新对话 QA 模型「ChatQA-70B」在不使用任何 GPT 模型数据的情况下,在 10 个对话 QA 数据集上的平均得分略胜于 GPT-4。
主题驱动的文本到图像生成,通常需要在多张包含该主题(如人物、风格)的数据集上进行训练,这类方法中的代表工作包括 DreamBooth、Textual Inversion、LoRAs 等,但这类方案因为需要更新整个网络或较长时间的定制化训练,往往无法很有效地兼容社区已有的模型,并无法在真实场景中快速且低成本应用。
数据获取最新解,便是从生成模型中学习。获取高质量数据,已经成为当前大模型训练的一大瓶颈。
指令调优或许是让大模型性能提升最有潜力的方法。用高质量数据集进行指令调优,能让大模型性能快速提升。
在过去短短两年内,随着诸如 LAION-5B 等大规模图文数据集的开放,Stable Diffusion、DALL-E 2、ControlNet、Composer ,效果惊人的图片生成方法层出不穷。图片生成领域可谓狂飙突进。
这篇论文介绍了一项新的任务 —— 指向性遥感图像分割(RRSIS),以及一种新的方法 —— 旋转多尺度交互网络(RMSIN)。
大模型长期以来一直存在一个致命的问题,即生成幻觉。由于数据集的复杂性,难免会包含过时和错误的信息,这使得输出质量面临着极大的挑战。过多的重复信息还可能导致大型模型产生偏见,这也算是一种形式的幻觉。
谷歌憋了许久的大招,双子座Gemini大模型终于发布!其中一图一视频最引人注目:一图,MMLU多任务语言理解数据集测试,Gemini Ultra不光超越GPT-4,甚至超越了人类专家。
目前最好的大型多模态模型 GPT-4V 与大学生谁更强?我们还不知道,但近日一个新的基准数据集 MMMU 以及基于其的基准测试或许能给我们提供一点线索,
训完130亿参数通用视觉语言大模型,只需3天!北大和中山大学团队又出招了——在最新研究中,研究团队提出了一种构建统一的图片和视频表征的框架。利用这种框架,可以大大减少VLM(视觉语言大模型)在训练和推理过程中的开销。