
LeCun谢赛宁首发全新视觉多模态模型,等效1000张A100干翻GPT-4V
LeCun谢赛宁首发全新视觉多模态模型,等效1000张A100干翻GPT-4V近日,LeCun和谢赛宁等大佬,共同提出了这一种全新的SOTA MLLM——Cambrian-1。开创了以视觉为中心的方法来设计多模态模型,同时全面开源了模型权重、代码、数据集,以及详细的指令微调和评估方法。
近日,LeCun和谢赛宁等大佬,共同提出了这一种全新的SOTA MLLM——Cambrian-1。开创了以视觉为中心的方法来设计多模态模型,同时全面开源了模型权重、代码、数据集,以及详细的指令微调和评估方法。
AI 和数据库真正的大一统时代要来了?
是时候把数据Scale Down了!Llama 3揭示了这个可怕的事实:数据量从2T增加到15T,就能大力出奇迹,所以要想要有GPT-3到GPT-4的提升,下一代模型至少还要150T的数据。好在,最近有团队从CommonCrawl里洗出了240T数据——现在数据已经不缺了,但你有卡吗?
中科大、上海AI实验室等组成的ShareGPT4V团队,推出了新的视频数据集,登顶HuggingFace排行榜!
AI卫星影像知识生成模型数据集稀缺的问题,又有新解了。
SAX-NeRF框架,一种专为稀疏视角下X光三维重建设计的新型NeRF方法,通过Lineformer Transformer和MLG采样策略显著提升了新视角合成和CT重建的性能。研究者还建立了X3D数据集,并开源了代码和预训练模型,为X光三维重建领域的研究提供了宝贵的资源和工具。
GTP-4o挑战悬赏八百万的超难数据集,实现SOTA!
本研究评估了先进多模态基础模型在 10 个数据集上的多样本上下文学习,揭示了持续的性能提升。批量查询显著降低了每个示例的延迟和推理成本而不牺牲性能。这些发现表明:利用大量演示示例可以快速适应新任务和新领域,而无需传统的微调。
在现实世界的机器学习应用中,随时间变化的分布偏移是常见的问题。这种情况被构建为时变域泛化(EDG),目标是通过学习跨领域的潜在演变模式,并利用这些模式,使模型能够在时间变化系统中对未见目标域进行良好的泛化。然而,由于 EDG 数据集中时间戳的数量有限,现有方法在捕获演变动态和避免对稀疏时间戳的过拟合方面遇到了挑战,这限制了它们对新任务的泛化和适应性。
「原来以为语料已经匮乏了,大模型训练已经没有语料了,实际上不是的,数据还远远没有跑光」。